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Papadimitriou:  Dick, did it all start? 
 
Karp:  I grew up in a suburb of Boston, actually close to the center of the city. My 
father was a middle school math teacher. My mother was a high school graduate, 
but later went back and earned a degree at Harvard through extension courses. 
Proudest moment of her life was when, at age 57, she stepped up to receive her 
diploma at Harvard. Education was very much paramount in my parents’ 
worldview. There were four of us, I’m the oldest of four, and they spaced us out 
at intervals of a college career so that they could have one kid in college at a 
time. 
 
I think the greatest admiration I felt for my father was when I visited his class in 
the middle school where he taught, and he was very much in command in the 
classroom, teaching math, and he could draw near-perfect circles freehand, 
which I thought was extremely impressive. 
 
Papadimitriou:  Funny. My father was also a middle school math teacher. Did 
you end up talking with him about math? 
 
Karp:  We did. But he really didn’t have very advanced mathematical knowledge. 
He was pretty much limited to what he was teaching. But his presence and sense 
of command in the classroom was something that I wanted to emulate, and I 
think that it’s not an accident that I went into teaching eventually. I always was 
good at mental arithmetic somehow. That’s not math, as I explain to my friends. 
But I was able to multiply three- or even four-digit numbers in my head to amuse 
my friends. 
 
Papadimitriou:   Math helps, but not much. 
 
Karp:  It doesn’t help much. I didn’t have any special tricks. But I really 
understood what math was about only in the tenth grade when I took Euclidean 
geometry and I fell in love with the subject. It was so pure, so pristine, so clean, 
and so amazing that you could prove things through pure logical reasoning. I 
used to pretend to be sick so that I could stay home and solve geometry 
problems. [laughs] 
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The other subject that I particularly liked in high school was Latin, which again I 
think had a nice logical structure that I enjoyed. 
 
I was always terrible at anything that involved mechanical aptitude. Even today, I 
have to lean on friends to figure out how to install a piece of software or how to 
screw in a light bulb and so forth. [laughs] 
 
I had a young aunt, only a few years old than I, who taught me to read, so I read 
quite early. For that reason I skipped a grade, and so I ended up being a year 
and a half younger than my classmates, which probably affected my social 
development. I think I was a bit of an introvert, and I clearly was behind my 
classmates in things like art and carpentry and the like. That feeling of weakness 
in that area has stuck with me throughout my entire life. Many years later I got an 
honorary degree at the University of Pennsylvania, and the person who 
introduced me at that event had been in a lab with me at Harvard, an electronics 
lab, where I was the klutziest fellow in the whole class. So he was totally 
astonished that anybody like me could possibly get an honorary degree from any 
institution. 
 
It was geometry that turned me on. I did well in high school in mathematics, and 
didn’t get so terribly advanced though. My high school didn’t offer calculus and I 
had to wait until college to take calculus. 
 
Papadimitriou:  Harvard was an obvious top choice I guess. 
 
Karp:  My parents directed me to go to Harvard. They directed me also to apply 
to MIT as a backup, but it was clear that they wanted me to go to Harvard. I think 
it was a good choice. The only thing that was problematic was that there were a 
lot of very bright kids there, and particularly… 
 
Papadimitriou:  That’s a problem, yeah. 
 
Karp:  That’s a problem. [laughs]  It’s nice, but it’s also a problem if you aren’t 
quite so sure of yourself. And in particular, there were some math prodigies who 
were way ahead of me. I didn’t realize that one of them was going to win the 
Fields Medal, David Mumford, and one of them was going to win a Nobel Prize, 
Ken Wilson. I just knew that they were a lot better than I was. 
 
Papadimitriou:  That must have made you feel better, but too late. 
 
Karp:  [laughs]  Too late. 
 
I also found that it was very difficult for me to get excited about a purely axiomatic 
subject if I couldn’t relate it to anything else. For example, I was very interested in 
game theory because I saw that it related to situations of conflict. But when I was 
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playing around with let’s say the axioms of topology, manipulating the axioms just 
was not something that I enjoyed. I needed a reference point. 
 
Papadimitriou:  Not necessarily outside math? Even inside math it would 
suffice? 
 
Karp:  Yeah, even inside. Like I didn’t have any trouble appreciating abstract 
algebra, because they were the specific instances of the general axiomatic 
systems. Even though I enjoy math for its beauty, I think I always feel the need 
for a reference point, which could be an application in the world or unification of 
two subjects. Something beyond the stripped-down formal content. 
 
It was really in my senior year that I encountered people like Mumford and Ken 
Wilson. 
 
Papadimitriou:  These are colleagues…? 
 
Karp:  They were actually younger than I. 
 
Papadimitriou:  Younger than you. I see. 
 
Karp:  A bit younger, but more advanced in mathematics. I really was reluctant to 
pursue a career that would have led to an academic position as a math 
department member. There were no computer science departments at that time. 
 
Papadimitriou:  True. 
 
Karp:  Toward the end of my undergraduate career, I took courses at the 
Harvard Computation Lab, which had a more pragmatic orientation – numerical 
analysis and the like. I also took some courses in probability and statistics, and I 
found that I seemed to have a particular affinity for those subjects. In particular, 
Professor Hartley Rogers who taught the probability course gave me a great deal 
of encouragement, because I did well in his course, and that to some extent 
mitigated my feeling that had been arising from my comparison of myself with 
these advanced young mathematicians. 
 
So I decided to stay on at Harvard and work in the Computation Lab. It was 
actually my mother who said to me, “Young man, go into data processing.” 
[laughs] 
 
Papadimitriou:  Is that right? 
 
Karp:  She would have liked me to be a nuclear physicist, but I didn’t really have 
much of a leaning towards physics. I found that instruction in physics that I 
received was not very satisfying. It was too non-rigorous I think. So I didn’t want 
to be a physicist. I wanted to do something with math. My mother told me that 
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data processing was the key to the future, I had enjoyed my applied math 
courses in the Computation Lab, so I stayed on there for the PhD. And gradually 
I began to develop a sense of my own powers, that I really could do something. 
 
Papadimitriou:  But computation was not something that fascinated you at first 
sight? 
 
Karp:  Even from the early days when I was multiplying numbers in my head, 
algorithmic processes really interested me. I remember there’s a famous 
algorithm called the Hungarian algorithm for the so-called matching problem, 
which I learned about. And the way it sort of proceeds inexorably toward the 
solution very beautifully doing nothing but addition and subtraction operations 
and comparisons appealed to me very much. I enjoyed other aspects of 
mathematics, but less so. I really had more of a feeling for discrete mathematics 
and constructed mathematics, algorithmic mathematics. I know that Don Knuth 
has expressed – a famous computer scientist, maybe the most famous – has 
expressed similar feelings about his own mathematical leanings. So I was lucky 
to come along at a time when discrete mathematics was something that one 
could make his specialty. 
 
Over the course of my graduate career, I began to get a stronger grip. I began to 
feel that I had some capabilities. I was successful in some summer jobs at 
outside laboratories and I found that I seemed to have a knack for lecturing. I had 
a few occasions to give seminar talks and to fill in occasionally for an instructor, 
and I discovered that the process of putting a lecture together and delivering it 
really appealed to me very much. 
 
Papadimitriou:  But you didn’t go into academia. [0:10:00] 
 
Karp:  One couldn’t in those days. My interests were not along the main lines of 
a mathematics department, and there were no computer science departments. 
 
Papadimitriou:  Nowadays, mathematics departments do hire computer 
scientists, but at that time it was probably unheard of. 
 
Karp:  Well, the term “computer science” was coined after I got my PhD as far as 
I know. I’m not sure, maybe around the same time. I began reading the meagre 
literature that existed on combinatorial mathematics and theory of computation. 
There wasn’t much. There was the graph theory book by Kőnig, there was… I 
think Berge’s book had come out by that time. A few other references. Kleene’s 
book on Introduction to Metamathematics. But there wasn’t really very much to 
dig one’s teeth into at the time. 
 
So I did a PhD dissertation that was concerned with the application of fairly 
elementary graph theory to the analysis of computer programs, figuring out which 
variables could be deleted and which variables could share a storage location if 
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they didn’t conflict. Things like that that became something of a fashion in 
computer science later. I anticipated some of that. That was my thesis. 
 
But at the time I got my PhD, I didn’t really feel that I had a truly advanced set of 
tools in mathematics. I was lucky enough to get a wonderful job at IBM, the IBM 
Research Center, the Watson Research Center outside of New York City. And I 
consider the nine years that I spent at IBM really a continuation of my education. 
I was lucky to have some wonderful mentors. Upon graduating, I had a number 
of offers from different branches of IBM, and it ended up being a choice between 
joining the Mathematical Sciences Department at the Yorktown Heights lab 
where in fact I did go, or being part of the team that was developing an advanced 
computer system in Poughkeepsie, the so-called Stretch computer. The same 
team eventually was responsible for developing the System/360 computers. And 
I was tempted, but I sort of had a gut feeling that I would do better and have 
more fun doing mathematical work, so I gave up the opportunity to the design 
operator console of the Stretch computer and joined instead a group that was 
doing logical design of digital circuits, what we call switching theory. 
 
I felt that I was able to penetrate into that field, had wonderful mentors and 
wonderful opportunities to expand my knowledge at IBM. I got there in 1959, and 
in 1960, my boss, a man named Paul Roth, had orchestrated a wonderful series 
extending over several weeks in which many prominent discrete mathematicians 
came together. These were the people who had really developed discrete 
optimization, network flow theory, linear programming – George Dantzig, Ray 
Fulkerson, Ralph Gomory, and others. So I was quite excited to meet these 
famous people from the RAND Corporation, Princeton University, and the other 
centers where this kind of work was going on. 
 
A very influential figure for me was Alan Hoffman, who joined IBM a little after I 
did but is about 10 years older than I am. Alan had been one of the leading 
figures in the development of linear programming and combinatorial optimization 
up to that point. 
 
Papadimitriou:  He came from RAND? 
 
Karp:  No. He had been at some center at UCLA where Derrick Lehmer was also 
operating, as I recall. Alan was known among other things for his example of the 
phenomenon that the famous simplex method of linear programming could cycle, 
could get into a loop. Although it never happened in practice, he constructed an 
artificial example. So he had some interest in algorithms, but basically he was 
more interested in mathematical structures from a non-algorithmic point of view. 
So he and I had very different styles, but he became a model for me in terms of 
the elegance of his abilities at mathematical exposition and also certain bodies of 
knowledge. He taught me what he knew about linear programming and network 
flows, flow of commodities through networks, and a little bit about eigenvalues of 
graphs and that sort of thing. So basic discrete mathematics. 
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He also used to set me up with dates with girls who were friends of his wife or his 
family. So he was an all-purpose mentor. 
 
The period at IBM was extremely enjoyable. It was really a dream job. Every now 
and then, I was asked to do something for the company, which I was willing to do 
of course. But 90% of the time, I was on my own to work with colleagues at the 
lab, and they were very good people. 
 
There were a couple of things I worked on that seemed to have had an impact 
from that period. One of them was some work on the traveling salesman 
problem, the famous problem where you have a salesman who knows the 
distances between every pair of cities in his territory and he wants to make a tour 
of his territory while minimizing the total distance traveled. With a colleague 
named Michael Held, we developed some algorithmic approaches that for a time 
made us the world-champion solvers of traveling salesman problems. We lost 
that position very soon, and by now of course we’ve been left in the dust by much 
more sophisticated methods. Some of the tools that we developed, what’s called 
a lower bound on the cost of the optimal tour, is still investigated. 
 
Papadimitriou:  It’s still the champion of lower bound? 
 
Karp:  Yeah, I suppose so. Yes. I also worked with a long-term colleague, Ray 
Miller, who was at the IBM Research Lab with me, and we got interested in 
parallel computation, partly motivated by the desire of IBM to develop some 
algorithms that could be submitted to the Patent Office so that IBM would have 
some standing in the area of patented algorithms in case that became a 
competitive issue. So we developed some formal models that we could use to 
develop parallel algorithms. In particular, we created an abstract model of 
computation that could be asynchronous, meaning that it wasn’t entirely 
predictable whether one step would precede another. And we… 
 
Papadimitriou:  Vector addition systems? 
 
Karp:  Yes. And that led to a nice mathematical formalism called vector addition 
systems. 
 
Vector addition system was a kind of rule for generating a subset of the lattice 
points in a d-dimensional space. And the decision question that we studied was 
whether a particular vector addition system generated an infinite set of reachable 
points so-called or just a finite set. 
 
Papadimitriou:  The boundedness thing. 
 
Karp:  The boundedness question. The interesting thing was that Ray and I 
developed, showed that it was algorithmically solvable. Later, other investigators 
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showed that while it was algorithmically solvable, the best algorithm for it would 
inevitably require an astoundingly high number of computation steps. This was 
something that we hadn’t really thought about. It was indicative of the level of 
development of the field, that nowadays you always ask for… 
 
Papadimitriou:  Automatically. 
 
Karp:  …automatically, “What is the time bound?” But there, at that point, we 
satisfied ourselves just showing that there was a finite, a terminating algorithm for 
the problem. 
 
Papadimitriou:  And that was what was known also for much easier problems 
like linear programming, max flow, and so on. People seemed to be content that 
the algorithm was finite. 
 
Karp:  That’s right. 
 
There’s a fundamental algorithm that was… it’s called Ford–Fulkerson algorithm. 
It solves the following problem. You have a network, and the edges of the 
network are like channels for sending some commodity. It could be oil, bits of 
information, water, whatever. And the question is, given the structure of the 
network and the capacities of these channels or edges, exactly at what rate can 
you pump the commodity from a given source to a given destination? It’s called 
the max flow problem. There’s a beautiful theorem called the max-flow min-cut 
theorem which characterizes it. [0:20:00] It’s related to linear programming. And 
there was a very nice algorithm called the Ford–Fulkerson algorithm for solving 
this problem. The Ford–Fulkerson algorithm could run for a very long time. In 
fact, if you had irrational capacities, it could even be non-terminating. 
 
Papadimitriou:  Fulkerson knew that, actually. 
 
Karp:  Fulkerson did know that. It didn’t occur to them to derive a variant of the 
algorithm that would have a nice upper bound on the number of computation 
steps. So I discovered two variants. One of them worked in what we call strongly 
polynomial time. The other worked in a running time that depended on the 
number of bits in the data. 
 
So there were two basically efficient algorithms whose efficiency we could prove. 
And it turned out that a brilliant young mathematician named Jack Edmonds at 
the National Bureau of Standards had also worked along the same lines that we 
were. It was a case of simultaneous discovery. 
 
This was very lucky for me, because that gave me entrée to visit Jack at the 
National Bureau of Standards. My first visit to him was one of the most inspiring 
moments of my entire career. Jack was not part of the establishment of the field. 
He didn’t hold a professorship at a major university. He didn’t even have a PhD. 



 8 

He was just some guy who had a master’s degree, had dropped out of the PhD 
program at the University of Maryland, somehow gotten himself a job at the 
Bureau of Standards, but he was doing absolutely brilliant work. He was also 
hindered a little bit by having shall we say a highly opinionated manner and 
personality [chuckles] which sometimes offended some of the powers that be at 
the RAND Corporation and Princeton University and such places. 
 
But he did work of historic value in the field of combinatorial optimization. And I 
visited him in order to pursue this joint work that we were developing on the 
network flow problem, but we spent a day together where he told me about the 
concept of polynomial-time computation, the idea that you would like to show that 
your algorithm runs in a time bound that’s only bounded by some fixed power of 
the size of the input. And he discussed how you could attack these combinatorial 
problems by formulating them properly and in a non-obvious way as linear 
programs, and how that led to beautiful combinatorial algorithms for standard 
problems called matching, matroid intersection, minimum arborescence. Jack 
just blew me away. It was like the most eye-opening single day I think I’ve ever 
spent. 
 
Papadimitriou:  Interesting you say that. I mean in a famous interview later, 
much later to George Nemhauser, Jack when asked, “So what are you telling 
me, Jack? Are you saying that this is like Einstein’s special theory or something?” 
and Edmonds said, “Yeah, it’s somewhere up there.” 
 
Karp:  [laughs] 
 
Papadimitriou:  I know. At that time, I laughed, I smiled and laughed. But the 
more I think about it, he does have a point. I mean it was fundamental, 
transformative, and completely out of the blue. 
 
Karp:  Right. And it definitely was one of the developments that prepared the 
way for my later work on NP-completeness, which has to do with the issue of 
figuring out which problems are solvable in polynomial time. That came a few 
years a later. 
 
So Jack and I ended up writing a paper together on these network flow problems. 
That’s pretty much the story of my time at IBM. It was just a wonderful interlude 
in my life, running from 1959 to 1968. 
 
—————— 
 
Papadimitriou:  Rabin was not an employee of IBM. He visited. 
 
Karp:  Another one of my most important mentors was Michael Rabin. Michael is 
a very famous computer scientist who is only a few years older than I am, but 
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when I was really a beginner in the field, he was already famous for his work with 
Dana Scott on finite-state machines, an abstract model of computation. 
 
It turned out that Michael was visiting the IBM Research Center, and we 
happened to be living in the same apartment complex on the outskirts of New 
York City, and so we began to commute together up to the lab. So every day I 
had a little over an hour of Michael’s time. And Michael, who had a very wide 
knowledge of mathematics and logic and a very sharp sense of where the field 
was going, basically became my mentor and told me about all kinds of things 
from logic and mathematics, theory of computation. Those trips up the Saw Mill 
River Parkway were also quite an inspiration for me in the late ’60s. 
 
Papadimitriou:  The landscape there is inspiring if I remember. You know, this 
is… 
 
Karp:  Well, I wasn’t noticing the landscape because I was mulling over what 
Michael was telling me. 
 
Papadimitriou:  And you stayed at IBM for nine years? 
 
Karp:  I stayed at IBM for nine years. During that period, as a kind of hobby, I 
would teach courses at universities in New York City – NYU, Columbia, Brooklyn 
Polytechnic Institute. And it was great fun. It was just a kind of addition to my 
activities, just broadened my activities a little bit. It was a learning experience. 
And I discovered that I had a gift for imparting knowledge and was successful in 
teaching and moreover enjoyed it tremendously, the interaction with the students. 
Teaching has always been a vehicle for learning on my part. It was a way in 
which I was motivated to expand my knowledge, and it was just totally delightful. 
The only downside of it was that the wind that whipped down Riverside Drive 
when I went over to Columbia to teach evening courses was a little hard to take 
in the wintertime. But apart from small details like that, it was just a wonderful 
additional experience to do this teaching. 
 
So I began to turn my thoughts toward making teaching a more important part of 
my activities and began to think about looking for a position at a university. But in 
1968, when I learned that Berkeley was setting up a computer science 
department, I felt somehow that I was ready to make the move. My colleague 
Michael Harrison called me up. He regaled me with tales of the beauties of 
California, the exciting atmosphere on the Berkeley campus, full of revolutionary 
ideas. And the package of living in Berkeley, being able to witness some of the 
social movements of the time, and being part of a great university’s computer 
science department appealed to me, and I gave up my position at IBM and 
moved to Berkeley in the fall of 1968. 
 
Papadimitriou:  Must have been an interesting time at Berkeley. You used the 
verb “witness” for the social movements. 
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Karp:  Yes. I have to admit that I was you might say a voyeur, that I really wasn’t 
throwing myself into for example the anti–Vietnam War movement or any of the 
other… 
 
Papadimitriou:  Free Speech Movement. 
 
Karp:  Free Speech Movement was a bit earlier. That had happened in ’64 or 
’65. But I was very interested in the atmosphere around the antiwar movement 
and the various socially revolutionary things that were happening, and Berkeley 
was certainly one of the focal points of all of that. But I was basically a voyeur, a 
witness. I wasn’t really deeply involved. I did a couple of minor things when the 
campus was closed. I would teach, give the lectures at my home. Once one of 
my best…  Perhaps my best friend from that period of time was a colleague, 
Gene Lawler, who was more active than I in these movements, and I had to go 
out to Santa Rita Prison near Berkeley to bail him out of prison after he was 
arrested for participating in an unauthorized march through the streets. So I had 
some tangential involvement in all of that. [0:30:00] 
 
Papadimitriou:  Even 30 years later when I chose to come to Berkeley, the 
memory of that period was one of the attractions. So it must have been even 
more attractive when it was going on. 
 
Karp:  Yes, but Berkeley has changed. I remember when Mario Savio, who was 
the leader of the Free Speech Movement, emerged from hibernation, he was 
really avoiding the public eye, but he did come to Berkeley for the twentieth 
anniversary of the Free Speech Movement. I happened to be teaching a class 
that met at the same time as the lecture that he was going to be giving on Sproul 
Plaza. So I told this class of 70 students that they really should go and listen to 
Mario Savio and I would excuse them from the lecture. Out of the 70, just one 
person stood up and left the room. I think most of them were mystified. They had 
never heard of the Free Speech Movement or Mario Savio. 
 
Part of the appeal of coming to Berkeley was that teaching would become a 
greater element in my life. And I took it very seriously, in fact perhaps too 
seriously. I think I sort of had the attitude that every lecture in a class was like a 
performance of King Lear and I had to, [chuckles] you know… 
 
Papadimitriou:  I thought it was. It’s not?  
 
Karp:  It’s not. I’ve gradually taken a more relaxed attitude towards teaching. As 
one gets more experienced in the field, there are more demands on one’s time 
and there are certain moments when you have to go into class without full 
preparation and make the best of it. But in the early days, I was never 
unprepared. I always prepared thoroughly and, if anything, my lectures were too 
polished. I think sometimes it’s good to show some of the rough edges. In fact, 
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some of my colleagues were very good at appearing to get stuck. Whenever you 
seem to be getting stuck of course, it excites the class. But I didn’t rely on such 
cheap tricks. I’d like to be extremely well prepared and to lay things out in a very 
organized way. 
 
Papadimitriou:  You are a legendary teacher, both around the department and 
in the field. I mean, so are you telling me it’s preparation? 
 
Karp:  Yes. Preparation, preparation, preparation. These are the three 
foundations of good teaching. 
 
Well, I should say that by now the level of teaching in the department that I’m in 
is phenomenal. The young people that we’ve hired are really setting higher 
standards than I think I ever enjoyed. 
 
But there are different approaches, different styles. My most respected colleague 
from that period of time, from the first dozen years at Berkeley was Manuel Blum, 
a famous computer scientist. And Manuel… 
 
Papadimitriou:  I doubt that “Preparation, preparation, preparation” was his 
motto. 
 
Karp:  No. I think my greatest strength was preparation and precision. Manuel’s 
greatest strength was first of all human warmth and additionally intuition. Manuel 
didn’t pretend to come into class with pedantic preparation, but he was able to 
convey the excitement of what he was doing. He was a divergent thinker, he 
originated many new lines of investigation, and he was able to inspire students 
who went on to do terrific things. 
 
Papadimitriou:  I recently read something written by him. He says that if you can 
prove that a statement is true and at the same time you can prove that the same 
statement is false, then you know you’re onto something. 
 
Karp:  I understand. But that wasn’t my style. My style was to decide whether it 
was true or false before I went into class. [chuckles]  But we had a wonderful 
time during the ’70s and ’80s when Manuel and I were together and building up 
Berkeley’s activity in theory of computing. Gene Lawler, whom I mentioned 
earlier, was also a part of that. 
 
Papadimitriou:  You became chair at that time. There were administrative 
changes or cataclysms going on. 
 
Karp:  Yes. When I joined Berkeley, I became the member of two departments. 
One of them was related to operations research in the College of Engineering, 
and the other one, which I thought of as my main department, was a fledgling 
computer science department in the College of Letters and Science, which had 
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split off from the electrical engineering department. So Berkeley had a situation 
where we had these two departments establishing themselves – the older 
electrical engineering department, which had a computer science section of 12 to 
15 faculty, and a small new department in the College of Letters and Science that 
was trying to define itself in a slightly different way relating more to the social 
sciences and the humanities. But it turned out that the differences were very 
superficial, and it became clear after a while that the two departments were really 
duplicating each other and the administration decided that something had to be 
done about this duplication. There were also very bitter feelings on the part of 
many of the faculty in the two departments. There were a number of people 
making personal innuendos and it was a messy situation. 
 
And I was selected to be the leader of this activity after it was merged back into 
the electrical engineering department as a supposedly autonomous division of 
the department. My main job was to sort of mend the fences, to get people past 
the rivalries that had been going on. And I think in that we were successful. I 
think people were really ready to give up their grudges, so from that point of view 
things went pretty smoothly. 
 
The Computer Science Division that I was heading was in some fuzzy way 
supposed to have some degree of autonomy, and the… 
 
Papadimitriou:  Still fuzzy. 
 
Karp:  Still fuzzy after all these years. But the chairman that I worked under, at 
least for the first year of my term, was very understanding of our need for 
autonomy. He gave me some room and I was very motivated then to do my best. 
 
I wasn’t a born administrator though, and after a while I started sneaking off to 
draw little mathematical diagrams on my blackboard when I should have been 
dealing with the budget and such things. So I don’t think that the later period of 
my administration was so notable, but at least by the time I stepped down from 
that job after a couple of years, I think we had reached a more peaceful 
environment. 
 
——- 
 
Karp:  Let’s take a particular computational problem as an example. Let’s take 
the problem of coloring a graph. A graph is just a structure where you have a set 
of points called vertices and lines called edges connecting them. So it’s a pattern 
of interconnections between the vertices. And if you’re given a graph, you can 
ask the following question. Can you put a color on each vertex, either red, blue, 
or green, in such a way that no two vertices that are joined by an edge have the 
same color? That’s called the graph coloring problem. 
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There are a couple of things to note about this problem. The first thing to note is 
that there are really an infinite number of instances of this problem, because you 
can be given any graph of any size. 
 
Papadimitriou:  And any number of colors to… 
 
Karp:  And any number of colors. But for simplicity, let’s just say red, blue, and 
green. 
 
Papadimitriou:  Three. Okay. 
 
Karp:  Then there’s a decision problem. For which graphs can you actually 
assign the colors so that you never get two greens adjacent to each other or two 
reds or blues adjacent to each other? How could you prove that the graph could 
be colored? 
 
Well, you could prove it very easily. You just exhibit the coloring and anybody 
could check. So this is an example of first of all a combinatorial problem, 
combinatorial decision problem. It has the property that a brute-force approach 
would be to just try all possible assignments of the colors, and that would be 
hugely expensive. So the obvious way to attack the problem would lead to a 
tremendous combinatorial explosion in the running time of the algorithm. 
 
So the question is, is there an algorithm that can reliably answer this question of 
whether the graph can be colored properly with three colors while running 
rapidly? [0:40:00] And our notion of rapid computation is by convention the 
property that the running time grows as some fixed power of the size of the graph 
rather than exponentially in the size of the graph – in other words, if the running 
time doubled every time you had one more vertex… 
 
Papadimitriou:  Or tripled as is the case with the coloring problem. 
 
Karp:  Or tripled as is the case with the brute-force approach to the coloring 
problem. That’s called exponential time, and that’s not satisfactory. So we’re 
looking for something that runs in time proportional to the number of vertices or 
the square or the third power or some fixed power of the number of vertices. 
 
We have many, many such problems, and we like to classify them. We would like 
to identify those problems that can be solved in polynomial time. And we have a 
name for that class of problems. We call it P for “polynomial.” 
 
Now you could also ask, for which problems is there a quick way of 
demonstrating… once you have decided that it’s solvable, a quick way of 
demonstrating that it’s solvable? Well, in the case of the coloring problem, that’s 
easy. You just exhibit the coloring. So the class of problems where there’s a 
quick way of presenting a solution once you have it is called NP for 
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“nondeterministic polynomial time.” I won’t explain why the term 
“nondeterministic” is appropriate, but that’s what we call it. 
 
It turns out that the great majority of the combinatorial problems that arise in 
applications, whether in pure mathematics or in scheduling factories or designing 
computer chips or making timetables for schools or dispatching taxicabs or – an 
enormous number of everyday problems – packing your suitcases into the trunk 
of your car… 
 
Papadimitriou:  Analyzing programs, which was the subject of your thesis. 
 
Karp:  Analyzing programs. There’s this vast terrain of combinatorial decision 
problems and related also so-called optimization problems. Most of them, if 
they’re formulated as yes-no decision problems like “Can you or can you not 
color the graph with three colors?” most of them lie in this class of 
nondeterministic polynomial-time problems. 
 
Papadimitriou:  NP. 
 
Karp:  The class NP. 
 
Papadimitriou:  Which is also – isn’t it? – a natural limit of our ambition, because 
if you cannot even recognize a solution if they gave it to you, if you bumped into 
it, then how can you expect to find it? 
 
Karp:  That’s right. But it’s interesting that the property is not symmetric. It’s easy 
to demonstrate that a graph can be colored with three colors, but there’s no 
obvious way and in fact no way known to succinctly demonstrate that it cannot be 
colored with three colors. So there’s also that aspect of it. 
 
But basically you’re right. You could, with proper formulation… 
 
Papadimitriou:  As Edmonds would have put it, salesmen of colorable graphs 
have an easy time because they can demonstrate to customers that they are 
colorable, but salesmen of uncolorable graphs don’t because there’s no obvious 
way to… 
 
Karp:  Right. Exactly, exactly. 
 
Taking a slight technical liberty, NP represents essentially all of the usually… the 
combinatorial problems that arise in practice. And within that, there is P, the 
seemingly much smaller class of problems for which we have polynomial-time 
algorithms rather than exponential-time algorithms. So there are many problems 
are in P – the problem of sorting a list of numbers, the problem of finding the 
shortest path through a graph, the network flow problems that we talked about 
earlier are examples of problems that are in the class P. But these are really 
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exceptional. The great majority of the problems that arise in applications and 
which lie properly described in NP do not appear to have such polynomial-time 
algorithms. The great majority of problems that we have to solve in practice don’t 
appear to be in the class P. But we have at the present time no proof of that. It 
still remains a legitimate possibility that P is equal to NP, that the class of 
problems that can be solved efficiently is the same as the class of problems that 
can be verified efficiently once you have found a solution. 
 
Nobody, none of us I think really believe that those two classes are the same. If 
the two classes were the same, it would be tantamount to saying that finding a 
proof is as easy as verifying a proof, which violates all of our intuitions about 
mathematics. But at the present time there is no rigorous demonstration that the 
classes P and NP are different from each other, and that’s generally considered 
the biggest open problem in computer science and maybe one of the half dozen 
most significant open problems in all of mathematics. And in fact among the open 
problems in mathematics, it may be the one that has the greatest philosophical 
significance because it deals with the very nature of proof and whether finding a 
solution is harder than exhibiting a solution. 
 
Papadimitriou:  Interestingly, it was discovered that in 1954, Kurt Gödel himself 
had proposed it, had actually stated… 
 
Karp:  Right. Yes, a letter by Gödel to… 
 
Papadimitriou:  Von Neumann, yes. 
 
Karp:  Yeah, in an informal way raised this question. And later it was found that 
John Nash had speculated along these lines as well. 
 
Papadimitriou:  That’s right. 
 
Karp:  And I discovered in a trip to Czechoslovakia back in the ’70s that this 
same question essentially was current in the Soviet Union. I met the 
mathematician Trakhtenbrot. 
 
Papadimitriou:  The perebor problem. 
 
Karp:  The perebor problem, yeah, they called it in Russia. 
 
Papadimitriou:  “Search.” It means “search,” unless I’m mistaken. 
 
Karp:  I guess so. I don’t know. And in particular, the developments that I’ll 
describe in a minute regarding this P versus NP problem were carried out in 
slightly different forms but essentially equivalently both in the Soviet Union by 
Leonid Levin and in the West by Stephen Cook and myself. 
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Papadimitriou:  Did you hear from Edmonds about the P versus NP problem? 
 
Karp:  No. I first became aware of it through a paper by Stephen Cook, a former 
colleague at Berkeley who had moved to the University of Toronto. It was in that 
paper that he gave a formal definition of NP, the class of problems for which a 
solution can easily be verified. One could argue that Jack Edmonds had this 
concept but hadn’t quite formalized it in a way that theoretical computer scientists 
would expect. But Cook did that. 
 
Then he did one additional amazing thing. He showed that a particular problem in 
mathematical logic was as hard as any problem in the class NP in the sense that 
it had sufficient expressive power to enable any problem in NP to be described. 
This is what’s called the satisfiability problem of propositional logic. You have 
variables that can assume the value true or false and you have a collection of 
conditions that those variables have to satisfy. Those conditions are called 
“clauses.” A typical clause might be the condition that “Either A is true or B is 
false or C is true,” and you’ve given a collection of these clauses involving a set 
of variables, and the question then is whether you can satisfy those clauses. 
What that means is that you can assign the value true or false to each of these 
variables so that every one of the conditions is satisfied. That’s call the 
satisfiability problem of propositional logic. 
 
Cook showed that that problem actually held the key to the question of whether P 
is equal to NP, because given any other problem that lies in NP with a suitable 
description of the problem, [0:50:00] you can write down any instance of such a 
problem. For example, the graph coloring problem. You can rewrite any instance 
of the graph coloring problem as a set of clauses. The clauses would say, “Every 
vertex has to be either red or blue or green,” “It cannot be both red and blue,” 
etc., etc., “If you have two vertices that are adjacent to each other, they can’t 
both be green.” In that way, you can write down a finite list of clauses that 
capture this particular instance of the graph coloring problem. And that 
essentially amounts to a reduction of the graph coloring problem to this problem 
in logic of deciding whether a set of logical clauses can be satisfied. 
 
Cook demonstrated that given any problem in the class NP, which is essentially 
the universe of typically occurring combinatorial problems, you can rewrite it in 
polynomial time as a problem of satisfiability. You can take any instance of it and 
in a uniform way rewrite it as an instance of the satisfiability problem. What that 
means is that the satisfiability problem is in some sense the most general, the 
most universal, the most expressive problem in the class NP, and if you could 
have a polynomial-time algorithm for solving that problem, in other words if that 
problem is in the class P, then every problem in NP would be in the class P. 
 
Papadimitriou:  So it is the least likely problem to be in P. 
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Karp:  So it’s the least likely problem to be in P. If that problem fell, then every 
other… all of the problems, all of these diverse problems that arise in engineering 
and commerce and the natural sciences and computer programming and so on, 
all of them would be solvable in polynomial time. Too much for anyone to believe, 
but…  So what that means is that we can focus on one particular problem if we 
wish, and that problem captures the question about the whole class, whether the 
whole class NP lies in P, is solvable efficiently. 
 
This was a terrific achievement by Stephen Cook. He was coming at it from the 
viewpoint of a logician, but when I saw his paper, it evoked a sort of different line 
of thinking on my part. Because it occurred to me, I felt convinced of it even from 
the start, that there were many specific problems that had the same universality, 
that it wasn’t a peculiar characteristic of just this satisfiability problem of 
propositional logic, but the down-to-earth problems of routing, packing, matching, 
scheduling, satisfying constraints, design of circuits, a host of problems from 
different areas of application would have also this same universality. 
 
So how does one prove something like that? The way you start from Cook’s 
result that the satisfiability problem has this universal quality, that everything in 
the class can be reduced to the satisfiability problem, now if we could show that 
the satisfiability problem in turn could be rewritten as a graph coloring problem, 
then the graph coloring problem would also be universal. Following that line of 
thought, I created a set of polynomial-time reductions showing that something 
like 21 different problems from various domains, but problems that are well 
recognized as being central in different application areas, also had the same 
universality property. And we call problems of this kind of NP-complete problems. 
 
So I presented a paper at a conference at IBM in which I unveiled my list of 21 
problems. And it was perhaps the first occasion where the theory of computing 
directly had bearing on problems out there in the real world. It happened to be 
sort of the sweet spot you might say where the typical difficulty of optimization 
problems in the real world was captured by the class NP. So starting from my list 
of 21 problems, people in various fields ranging from physics to biology to 
different branches of engineering began constructing reductions working from the 
reductions that I had given and developing more and more until thousands of 
problems eventually were shown to be NP-complete, to have this universal 
character. What this means in practice is that when a problem is shown to be 
NP-complete, as most practical problems can be, it’s incredibly unlikely that we 
will ever find a fast algorithm that succeeds in solving all instances of the 
problem. So it’s a kind of impossibility result. 
 
Unfortunately, we have a strong belief that NP is not contained in P but we don’t 
know it for sure. This is still the P versus NP problem. 
 
Papadimitriou:  But our ignorance has let us go a long way. 
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Karp:  But our ignorance has let us go a long way because we now know that all 
of these NP-complete problems are equivalent – either all of them or none of 
them are solvable in polynomial time. 
 
Papadimitriou:  And also I think that, something that always surprised me in NP-
completeness, is its broad applicability, that it’s not like some problems are in P, 
some problems are NP-complete, and for most problems we don’t know. 
 
Karp:  Right. Most problems are NP-complete. 
 
Papadimitriou:  Most problems can be classified. If they’re not NP-complete, 
you start suspecting that maybe there’s a polynomial-time algorithm. Lo and 
behold, eventually you may find it. Amazing foresight from your part is that, 
reading your paper, in the end you seem between astonished and annoyed that 
three problems, which one of them was factoring, the other was primality, the 
other was graph isomorphism, resisted your classification. I guess linear 
programming was classified soon after that, but the other two still resisted. 
 
Karp:  From the starting point of my paper, people developed a kind of 
cornucopia of NP-complete problems using very refined methods far beyond the 
relatively simple methods that I had used. And Christos, you were very influential 
in that line work. 
 
Papadimitriou:  I started my graduate career a few months after you published 
your paper. This means that I never had trouble really choosing a thesis topic. 
 
Karp:  I was in awe of the depth of some of the reductions that you and other 
colleagues like Larry Stockmeyer and Mike Garey and David Johnson and 
various other people produced. So it became a very refined area where not only 
were broad problems shown to be NP-complete but even very restricted special 
cases of them could be shown to be general, to be universal. 
 
Papadimitriou:  Also you spoke about the breadth of the applicability of this 
notion. I probably have told you this, but I looked up at a search engine the term 
“NP-complete,” how often does it appear in scientific papers, and I got over 2,000 
papers that contain “NP-complete” in their title and abstract. That may not be 
surprising until I tell you I had restricted the search to physics and chemistry. 
 
Karp:  I see, I see. I wonder how many of those authors actually knew the 
definition of NP-completeness and how many of them were using it in a kind of 
informal way synonymous with “hard.” 
 
Papadimitriou:  This would speak even louder for its impact. 
 
Karp:  Yeah, yeah. 
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Papadimitriou:  The more an achievement, a scientific achievement is abused in 
the literature, the higher it is. 
 
Karp:  Yeah, that’s interesting. 
 
So this was a peak moment of my career, but it left us with a question. How do 
we cope with these problems? We still have to schedule our factories and our 
schools. We still have to ship cement from factories to the battlefront and so 
forth. We still have to optimize production in different ways. And not only that. 
There are many problems in pure mathematics that we would like to attack from 
this point of view. So how is it that the world doesn’t grind to a halt? How is it that 
we can still dispatch taxicabs [1:00:00] and pack the suitcases into the trunk of 
the car? And partly it’s because some of these are fairly small instances, but it’s 
more than that. We seem to be able to do well on quite huge ones as well, even 
though the problems are NP-complete. 
 
So what is a possible methodology for demonstrating that all is not lost, that we 
can really do well? In practice, people seem to muddle through. They can take 
some big, very complicated problem like scheduling the classes in the school and 
they’ll somehow be able to play around and eventually get a solution that 
satisfies almost all of the constraints that are imposed. The standard way that 
people in theoretical computer science attack this is to formulate the problem as 
an optimization problem, to ask not only “Is there a solution or isn’t there a 
solution?” but to in some way attach a cost to different possible solutions. A good 
example would be the traveling salesman problem where you have distances 
between cities and you want to make a tour that minimizes the total distance. 
 
Papadimitriou:  Or graph coloring where you are not given a priori a number of 
colors but you want to minimize the number of colors. 
 
Karp:  Exactly. So you can define the notion of an approximate solution if maybe 
you’re willing to be off by 5% or 10% in the tour of the salesman or in the cost of 
production in a factory or the area of the chip. That still could be quite satisfactory 
in practice. So people started proving theorems of the form “Here’s a polynomial-
time algorithm that solves problem X within 10% of the optimum.” This led to a 
great extension of the theory of combinatorial optimization that pioneers like 
George Dantzig and Fulkerson and Edmonds and other people had developed 
using methods in many cases based on linear programming to get these 
approximations. 
 
Unfortunately, practitioners were not terribly satisfied with these solutions, with 
these bounds. For example, a famous worker in computational biology once said 
to me, “Why do I care that they can prove it within a factor of 10 or log n in the 
worst case when I’m solving instances every day within 1% of optimal?” In short, 
it has turned out that in most cases the bounds that one can prove about the 
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degree of approximability using a polynomial-time algorithm are a bit too 
pessimistic to really satisfy practitioners. 
 
Papadimitriou:  I totally agree. And also in some sense this unfortunate effect 
can also be seen in a different way I think – that with using mathematics as you 
understand them today, the mathematics you are using, it’s very hard to bring 
closed upper and lower bounds on the approximability of a problem that we can 
prove. In other words, the upper bound, how well you can do, and the lower 
bound, what you know to be NP-complete to do. And that’s in contrast to the 
original NP-completeness theory where there was a very fine dividing line 
between the problems that we can solve and the problems that we cannot solve 
exactly. 
 
Karp:  There’s another very beautiful development that I’ll just mention 
parenthetically, which is the area of hardness of approximation. People 
developed very powerful theorems in I guess it was the late ’80s, enabling them 
to prove the limits of approximate algorithms, that you were able to prove in 
some cases that the degree of approximation that can be achieved in polynomial 
time is very poor, that you have to accept a very large ratio between the cost of 
the approximate solution and the cost of the optimal solution. So briefly, one can 
say that people were showing that for many of these problems, getting any kind 
of decent approximate solution is as hard as solving the problem exactly. That’s 
become one of the mainstream areas of the theory of computational complexity 
and one in which Berkeley students and faculty have had a lot of influence. 
 
Getting back to the birth of NP-completeness a little bit with my personal history 
on this, first of all I became distracted for a couple of years because I was 
appointed to head this new Computer Science Division where we were 
attempting to heal the wounds of the rivalry that had been created. And unlike 
some others who have had such positions and, like yourself, were able to 
continue their research, I didn’t seem to be able to juggle things well enough. So 
I had to really concentrate on my administrative job for a couple of years and 
didn’t make progress on my theoretical work. And by the time I left my 
administrative position, the techniques of proving NP-completeness had moved 
well beyond what I had been able to do earlier. 
 
I should mention that there was… I think I did say something about it a few 
moments ago, but there was in parallel with the work that Stephen Cook did in 
the original NP-completeness and followed on by further reductions, Leonid 
Levin, a brilliant mathematician in the Soviet Union, did very much the same 
thing around the same time. And Levin eventually came to the United States and 
has become a prominent member of our theoretical computer science 
community. 
 
When I came off my administrative post and had a little bit of time to think, I 
began to ask myself, “How can we bridge the gap? How can we get some 
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constructive results to demonstrate that all is not lost with these NP-complete 
problems?” And it occurred to me that maybe the thing to do was to show that 
some of these problems were efficiently solvable on the average. So I began to 
delve into average-case complexity. 
 
What do we mean by “solving a problem on the average”? You have to define 
some probability space of problem instances. For example, if you’re looking at a 
problem on graphs, you might assume that all the graphs with a given number of 
vertices and edges are equally likely, a very simplistic assumption. Or if you’re 
dealing with a problem where the entry, the data in the problem consists of the 
numbers in a matrix, you might assume that these numbers are drawn 
independently from some simple distribution. And indeed, if you’re willing to 
make assumptions like this, you can prove nice theorems, you can prove that it’s 
easy for example to find what’s called a Hamiltonian circuit in a graph, a tour that 
visits all the cities without repetition. And many of these problems become easy. 
You can show that that traveling salesman problem can be solved with very small 
relative error. 
 
So I reveled in this and had a great time proving results of this kind for a few 
years in the mid to late ’70s. The reception for this kind of work by the community 
was at best mixed, because the simple probability distributions that we were 
assuming didn’t strike people as being particularly descriptive of the kinds of 
problems that would come up in practice. 
 
Papadimitriou:  Perhaps the intellectual tradition of computer science has been 
to be agnostic about where the inputs come from. 
 
Karp:  Yes, yes. You’d like something that works for all inputs, and that was not 
being provided by this probabilistic analysis. So I had a great time with it, but it 
was not necessarily a landmark achievement in terms of the progress of the field.  
 
However, a related direction became very prominent. In the kind of probabilistic 
analysis that I was engaged in, a probability is in the generation of the input. So 
you’re assuming that the input is a random graph or a random matrix or 
something of that nature. There’s another way to inject probability, which is to 
assume that the input can be any graph, any matrix, any data object, but that the 
algorithm is allowed to generate random numbers or allowed to have a source of 
random numbers, random zeros and ones for example. [1:10:00] 
 
In a 1976 paper presented at a conference at Carnegie Mellon University, 
Michael Rabin, the hero with whom I had commuted to IBM back in those days, 
again inspired me and the whole community by giving some beautiful examples 
of algorithms which depended on a source of random numbers and could solve 
problems that we didn’t know how to solve without randomization. And he gave 
two very striking examples. One of them is the problem of finding the closest pair 
of points in d-dimensional space without exhaustively looking at all pairs, and the 
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other one was testing whether a number is prime, whether a number has no 
divisors except itself and one. 
 
So Rabin, building on some earlier work by Gary Miller, who was a student at 
Berkeley at the time, gave a randomized polynomial-time algorithm for testing 
whether a number is prime. The algorithm depends on random coin tosses, 
random bits. It generates random tests that can be applied to the given number. 
If any of these tests fail, then you have a demonstration that the number is not 
prime. But if these random tests succeed, then you’re left in doubt as to whether 
the number is prime or not. 
 
Papadimitriou:  But tiny doubt. 
 
Karp:  But very small doubt, because every time you generate a new random 
test, if the number is not prime, you’ll have at least a 50% chance of showing that 
it’s not prime. So if you apply a series of such tests, the chance that a number 
that’s not prime would survive and remain in doubt would become vanishingly 
small. 
 
So in practice, this kind of randomized algorithm is really quite useful and quite 
valuable. The first polynomial-time randomized algorithm for primality was 
actually due to the mathematicians Solovay and Strassen, but the version that 
was due to Miller and Rabin somehow, through the force of Michael Rabin’s 
character in part, led to a revolution in the way we think about algorithms. There 
is the philosophical question of how do you actually get random bits, and there’s 
a whole body of work on that. But in practice, one can basically get sufficient 
degree of random bits for practical purposes. So, many, many problems were 
solved more efficiently or more simply by using randomization. 
 
Papadimitriou:  You did a lot of work on this. 
 
Karp:  Yes, I did. There are a couple of…  I can give a couple of examples. One 
of them, in one of the stories, Michael Rabin reappears. 
 
Michael came to Berkeley one day and of course we were overjoyed to see him 
and took him out to lunch and were having a nice discussion in which Michael 
revealed a new algorithm that he had developed for the following problem. 
Suppose you have a large body of text and you’re given a particular word, and 
you want to test whether that word occurs somewhere in the body of text. Well, 
you can do it by a brute-force method of sliding the word across the text and 
checking in each position whether you get an exact match with the word. But if 
the word is very long, that’s not a very efficient way to do it. What Rabin had was 
a randomized algorithm which would achieve the same effect of comparing the 
word with every position in the text but at the cost of only a constant number of 
operations for every position in the text, what we call a linear-time algorithm. 
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The basic idea is what we call fingerprinting – that you take the word and you 
compute a kind of random function, which we call the fingerprint of the word. It’s 
just like a fingerprint for a human. A fingerprint doesn’t describe you completely, 
but it’s extremely unlikely that two different individuals would have exactly the 
same fingerprint. You can use that same philosophy using random bits to 
generate a fingerprint. And Rabin had a particular way of doing that which 
allowed you to take the fingerprint of the word whose occurrences you are 
searching for and to slide across the text and compute the fingerprint of every 
stretch of text in such a way that when you advance from one position to the 
next, you’ll do only a constant amount of work. And Rabin did this with a certain 
formalism involving random matrices of determinant 1. 
 
Michael showed us all of this, and it occurred to me that there was a slightly 
simpler way to do it. So I shouted out, “Michael, you don’t need the matrices!” 
Michael doesn’t like to have somebody one-up him in that way, but he thought for 
a little bit and he had to agree that yes, that was a somewhat cleaner way to do 
it. So, very generously he made me a co-author of what is now known as the 
Rabin–Karp string-matching algorithm. 
 
Another example is the problem of finding a maximal independent set of vertices 
in a graph. This is perhaps a little bit abstruse, so let me try to explain it. 
 
Papadimitriou:  You can relate it to coloring very naturally. You are trying to find 
a set of vertices that can be colored by one, by the same color. 
 
Karp:  The problem can be stated that way. You want to find a maximal set of 
vertices that can be colored with the same number… same color so that no two 
of them are adjacent. 
 
Now it turns out that the problem of getting the largest possible number of 
vertices that are independent in this sense is NP-complete. But you can ask for a 
weaker condition. You can ask for a set of vertices which is independent – that 
means that no two of them have an edge between them – but is what we call 
maximal, which is different from maximum and means simply that no single 
vertex can be added to the set. Every vertex that’s left out of the set is adjacent 
to some vertex in the set. 
 
Now that problem is easy to solve by a sequential algorithm – you just pick a 
vertex and scratch out all the vertices adjacent to it and then pick another one 
and so forth. But what about doing it through a parallel algorithm? How can you 
do it very, very rapidly in parallel? People had conjectured that there was really 
no way to use the parallelism because you would then have to coordinate the 
actions of different processors in solving the problem. But Avi Wigderson, a 
brilliant postdoc with me at the time in the late… mid ’80s I guess it was, together 
with me devised a fast parallel algorithm for doing this, and this was later 
improved by another colleague, Michael Luby, who was my PhD student. 
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The moral of the story is that randomization, a use of probability different from 
what I had been doing with the probabilistic analysis, turned out to be an 
extremely powerful tool in the kit bag of computer scientists. 
 
Papadimitriou:  Also in the same spirit, there was the random-walks algorithm. 
 
Karp:  This was worked on with Richard Lipton. Richard spent about a year or 
two at Berkeley in the late ’70s. He’s a brilliant researcher. He’s currently well 
known for the blog that he’s been producing. And we did a couple of things 
together. One of them had to do with searching a maze. 
 
Imagine that you are trying to wander around a maze to see if somewhere in the 
maze there’s a pot of gold. However, you have a very poor memory. When you 
reach an intersection in the maze, you can’t even recall whether you’ve been 
there before. All that you can do is just pick some new edge in the maze and 
follow it. So we asked ourselves the question, “What if you make a random 
choice at every intersection as to how you’re going to leave that intersection, and 
you can’t even remember anything else except where you are and what the 
incident corridors of the maze are? How long would it take you to cover the whole 
maze?” We showed that it can be done in time that’s only proportional to the third 
power of the number of nodes. In other words, it would be a polynomial-time 
algorithm [1:20:00] for searching the entire maze without any memory except the 
ability to know at any point which corridors are incident with your current location. 
 
This can be rephrased in terms of a randomized algorithm for searching a graph 
with a very small amount of storage. And it’s remained an open question whether 
problems that can be solved with that amount of storage using random bits can 
also be solved deterministically. It remains an open problem to this day. 
 
Dick Lipton is an interesting character. He had an interesting way of working. He 
would do his thinking at night and his communicating during the day. His lecture 
preparation he just didn’t do. He managed to do a pretty good job just using his 
wits without any time for preparing his lectures. But he’d think very hard about 
research problems in the evening, and then he’d come and circulate around the 
department, having discussions with various people. And I was typically on his 
circuit, so every day or two he would come by and reveal his latest thoughts. 
That’s what led us into the random walk work, which turned out to eventually lead 
to a joint paper with some other colleagues at Toronto and elsewhere. 
 
But he also proposed another interesting line of investigation. We have every 
reason to believe that the NP-hard problems are very hard, but suppose you 
were focusing on, in the case of a graph problem, just graphs of a certain size, a 
certain number of vertices and edges. Would you be able to devise a special-
purpose algorithm that would allow you to handle all of those graphs? And we 
could formulate that in terms of logical circuits that would take the description of 
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the graph or the combinatorial input and feed it through a series of gates and end 
up with an output which would say yes or no to determine whether the input had 
the desired property. Could you formulate such a logical circuit tailored just for 
inputs of a certain size? And we showed that in the case of NP-hard problems or 
NP-complete problems, this would not be possible unless some very unlikely 
discovery event occurred in complexity theory that we believe is not possible. 
This ruled out one possible avenue for attacking NP-complete problems, namely 
focusing one at a time on different sizes of inputs. 
 
It turned out that the result that Richard Lipton and I got could actually be 
improved and simplified by another very powerful researcher, Michael Sipser, 
who’s now chairman of the mathematics department at MIT. Mike was and is a 
good friend, and we worked together on a certain problem about matchings in 
random graphs. A matching in a graph is just a set of edges that don’t touch each 
other. So no vertex occurs in two edges of a matching. The problem was to find 
very large matchings in random graphs. The ability to do that would of course 
depend on the density of the graph. And what Mike and I discovered through 
simulations was that a certain algorithm would find a matching that covered 
almost all of the vertices of the graph provided the ratio of the number of edges 
to the number of vertices was above a critical value given by the transcendental 
number e. 
 
And we proved various other things about certain algorithms to find matchings in 
random graphs. One of the techniques we used was to approximate a sort of 
discrete process by a continuous one that could be described by a differential 
equation. And there was a certain technical theorem that we depended on in 
making this transformation to the differential equation, and we depended on a 
theorem due to the mathematician Thomas Kurtz to justify the use of the 
differential equation. We had a very hard time applying the theorem, and if truth 
be told, there was even a slight gap in our final presentation of the result, and we 
labored over this difficult work for quite some time. 
 
After the work was completed, Mike sent me a present. You may recall that the 
central character in Joseph Conrad’s Heart of Darkness was named Kurtz, a very 
nefarious and mysterious character. So Mike sent me Heart of Darkness as a 
present to remind me of the difficulty we had with Kurtz’s theorem. 
 
Mike was one of the favorite students that passed through Berkeley during the 
era when Manuel and I were working together leading the activity at Berkeley. 
Two of the other people who passed through and went on to distinguished 
careers were Silvio Micali, a leading cryptography researcher at MIT, and Vijay 
Vazirani, a combinatorial mathematician at Georgia Tech. Silvio and Vijay 
entered our graduate program at the same time, and in their first year at 
Berkeley, the first semester at Berkeley, they took my graduate course on 
combinatorial algorithms. Unfortunately, neither of them passed in any homework 
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solutions during the entire term nor did they bother to hand in the take-home final 
examination at the end of the course. What were they doing? 
 
They were working on a very difficult problem. They were trying to extend the 
result that John Hopcroft and I had obtained for a particular class of graphs to the 
full class of graphs having to do with computing a matching of maximum size. 
Edmonds had solved the problem in polynomial time as part of the brilliant work 
that I described earlier, but there was a certain conjecture about the improved 
running time that might be possible. And Silvio and Vijay dropped all of their 
coursework to concentrate on this and were very close to proving this very 
important result about matchings but hadn’t quite completed it at the end of the 
semester. 
 
So here I was faced with a dilemma. They were obviously brilliant. They had 
done no work in the course. It appeared that they might be solving this problem, 
but we didn’t know for sure until they wrote everything down. What was the grade 
that I should give them at the end of the course? 
 
Well, I couldn’t give them a really good grade, but on the other hand I didn’t want 
them to be kicked out of graduate school, so I decided to give them a B-minus, 
the lowest grade that they could get without getting into trouble with the dean. So 
I gave them a B-minus in the course. They never complained. They completed 
the solution. And about 20 years later when Vijay came to town, I told him that I 
was going to change the grade to an A. 
 
Papadimitriou:  And it was about that time that we had the Complexity Year at 
MSRI. [Mathematical Science Research Institute – ed.] 
 
Karp:  Yeah. That was wonderful. That was a great experience. MSRI is one of 
the mathematics institutes, I think the first one to be set up as a quasi-permanent 
institute for the study of mathematics with National Science Foundation 
sponsorship. And I think it was quite early in the history of MSRI. It was 1985 
when Steve Smale asked me to join forces with him in running a year-long 
research program in computational complexity at MSRI. So I was very happy to 
join with Steve in proposing this, and during that year I worked intensively with 
the staff at MSRI, and in particular with the mathematician Calvin Moore, who 
was the associate director at the time. He was incredibly helpful and selfless in 
handling all of the details, all of the logistic details of selecting and bringing in 
postdoctoral fellows and visiting faculty. We had a glorious year of research on a 
daily basis. Always something new for the entire year with an all-star cast of 
postdocs and senior scientists. 
 
I actually played Cupid that year. I introduced David Shmoys to Éva Tardos, who 
were both postdocs at the time at the institute. I asked them to run the 
colloquium, to run the weekly lectures at the institute. And… 
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Papadimitriou:  They run a household now. 
 
Karp:  They soon became attached to each other and now for many years 
they’ve been running a joint household in Ithaca, New York. So that was a 
desirable outcome of the Complexity Year. [1:30:00] 
 
I didn’t get a lot of work done that year. I was too busy going to talks and 
enriching my background. But it was a great success and many of the postdocs 
and young faculty who participated said afterwards that it really broadened their 
horizons. 
 
Papadimitriou:  On the other side of the campus, there was ICSI. [International 
Computer Science Institute – ed.] 
 
Karp:  Yes. That was another one of my very fortunate external involvements. 
Around 1988, a group of people from industry and universities in Germany 
decided that they would like to sponsor a new institution that would receive 
postdoctoral researchers from Germany and integrate them into research 
projects. They had found that the usual channels of bringing postdocs from 
Germany into American universities didn’t always guarantee a warm reception or 
a good connection for the postdocs with the ongoing activities. So the charter of 
this new institution was to provide a home for these postdocs where they could 
be well-integrated into the activities. 
 
I became attached to this new enterprise and led a small group in theory of 
computation that also included Michael Luby, who later went on to found a 
successful company, and Lenore Blum, who has worked for years with Stephen 
Smale and is now a professor along with her husband Manuel and her son Avrim 
at Carnegie Mellon. 
 
So with substantial funding from the German side, we were able to operate an 
ongoing algorithms research activity with many participants particularly from 
Germany, also from other countries such as Israel, and we became one of the 
obligatory stops that travelling theoreticians would make in their circuits around 
the country. It was very wonderful for about a decade. After a while, support from 
Germany was not renewed. 
 
After several years at ICSI, I succumbed to an early retirement offer from the 
University of California. It was a famous moment in 1994 when the pension 
system of the university was rich and the university was poor, and so they 
decided to pension off, to provide inducements for people to retire. So even 
though I was nowhere close to ending my career, I succumbed to this offer and 
moved a year later to the University of Washington. 
 
The reason I chose the University of Washington was that I was very interested 
in computational biology. In the early ’90s, the Human Genome Project was 
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getting into high gear and there was a feeling that first of all biology would be the 
most important science of the coming generation and also I had the feeling that 
there was a great opportunity for work in combinatorial algorithms related to 
biology, because we were dealing basically with combinatorial objects. We were 
working with the genomes, which are strings of symbols. We were working with 
networks of interacting proteins and trying to figure out which subsets of the 
interacting proteins worked together to regulate the activities of cells. There were 
just many combinatorial problems. There were problems of figuring out the 
phylogenetic trees that indicate the descent of different species from ancestral 
species. It seemed like a very rich area where I felt that my combinatorial skills 
would give me an edge. So starting around 1991, I began to devote myself to 
combinatorial problems arising in computational biology, and I’ve continued to do 
that for over 20 years now. 
 
So coincident with the extension of the early retirement offer came the 
opportunity to move to the University of Washington for a time, where 
computational biology was more advanced than it was at that time at Berkeley. 
So I spent four very happy years at the University of Washington, sitting at the 
feet of biologists and trying to learn the trade. It was a paradoxical situation 
because I would wander over to the labs where the various postdocs in 
molecular biology were doing their work and trying to understand what they were 
doing more or less as a humble student, and then when they decided to move on 
from their postdocs, they would ask me to write a letter of recommendation. So it 
wasn’t clear which of us was the teacher and which of us was the student. But in 
any case, I benefitted greatly from that exposure to computational molecular 
biology and learned a little bit about what goes on in the labs and what kinds of 
experiments and measurements are feasible. 
 
In 1999, after my four years in Seattle, I was invited back to Berkeley. 
 
Papadimitriou:  I hired you back. I was the chair at the time. Yeah. 
 
Karp:  I see. Well, I owe it all to you. 
 
Papadimitriou:  We had missed you. 
 
Karp:  Well, I’m glad that I was missed. I think part of the reason that the 
opportunity came to me was that Berkeley was trying to get into high gear in 
computational biology at that time. So I also became attached to a very new 
department, the bioengineering department. Over the next several years, 
collectively we were very successful in hiring some of the best young minds in 
the field, and now we have a thriving computational biology center spanning the 
campus. 
 
When I returned to play that role at Berkeley, there were certain technicalities 
that required me to keep my appointment under 50%. So I relied again on the 
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International Computer Science Institute to be my second home. But this time, 
there was a different environment. We weren’t receiving the ample funding from 
Germany but instead several colleagues in the area of computer networking, 
including Scott Shenker and Sally Floyd and Vern Paxson, were founding an 
outstanding networking research group funded by AT&T. And even though I 
hadn’t done any work in computer networking, they invited me to join the team, 
which I was delighted to do. And so for the next several years, in parallel with my 
work in computational biology, I worked with you on one occasion and with Scott 
Shenker and others on problems in networking. 
 
The most significant outcome of that period of research had to do with the 
concept of a peer-to-peer network. A peer-to-peer network is a system of 
computers which collectively share their common data. And the fundamental…  
So a computer in a peer-to-peer network may well be holding data that doesn’t 
belong to it so to speak but is being stored on behalf of some other computers in 
the system. One of the problems in the peer-to-peer network is the navigation 
problem of locating the computer in the system that contains a given piece of 
data given the name of that data. This is a difficult problem because the system 
is dynamic, computers are entering and leaving, and so the assignment of data 
to computers is constantly changing. And we developed a particular method for 
solving the navigation problem. In other words, using this method, a query could 
enter the system at an arbitrary computer and, given only the name of the data 
that was being searched for, the computers could pass their query on from one to 
another until it reached the appropriate target where the answer could be found. 
 
That paper turned out to be my second most cited paper, the most cited one 
being the initial paper on “Reducibility among Combinatorial Problems.” 
 
Papadimitriou:  Your work in computational biology, I remember finding that 
fascinating. I was particularly moved and inspired by the faithfulness with which 
you wanted to approach biology. It’s easy to become, to solve silly problems that 
you can then claim relate to biology. It’s also easy to become the research 
assistant of a biologist. But to cut your own path and still be faithful to both 
computation and biology, I found that very inspiring. 
 
Where do you see this computational biology work going? 
 
Karp:  I think that it’s really of fundamental importance for the future of science 
and medicine. [1:40:00] Because we’re entering a phase of personalized 
medicine now where it may be possible to tailor medical treatments according to 
the particular genetic structure of an individual, the particular mutations and 
variations in an individual’s genome. For that, we have to analyze complete 
genomes to understand which genetic mutations or variants create 
susceptibilities to disease. It’s a huge combinatorial problem, particularly since 
most diseases are multifactorial – in other words, there’s not usually a single 
mutation or a single event that induces the disease but some kind of cascade of 
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events. So I think the profound problem of finding these combinations of 
mutations and tracing the causal path by which a disease is induced and possibly 
finding ways to intervene with those chains of causation, these are really 
fundamental questions that will change the face of biology and medicine and 
involve very complicated combinatorial work, which I hope to be a part of as we 
go along. 
 
I will say though that one needs a certain mentality to work in computational 
biology, and I haven’t completely succeeded in crossing that bridge. I still find 
myself seduced by the idea of creating beautiful algorithms. And that’s part of the 
game…  Very unfortunate. [laughs]  That’s part of the game, but there’s much 
more to the game than finding wonderful algorithms. First of all, one has to be 
very faithful to the kinds of measurement methods that are available for biologists 
to acquire data. One has to work closely with biologists to understand what they 
really want to know, what they really want to find out. And once you produce a 
piece of software that can be used by a biologist to solve a problem, you have to 
convince them that they would like to use it, you have to produce highly tailored 
software and human–computer interfaces that make it easy for the biologists to 
use, and have to live with the unfortunate fact that the biologists really don’t care 
very much how elegant your algorithms are. They’re judgement of an algorithm is 
based entirely on whether they find the results it produces agreeable. 
 
So it’s a very complicated business. I can’t claim to have had as much impact as 
I would have liked, because I haven’t been as adept at playing all of the 
dimensions of this game as one might want. 
 
One thing I do feel very good about, however, is having blazed a trail that has led 
many other people with training in theoretical computer science into 
computational biology, where they’ve been very productive in some cases, more 
productive than I have been. Several of my former students and postdocs who 
are now at places like Tel Aviv University or the University of Texas or UC San 
Diego have been very successful in working in computational biology. 
 
Papadimitriou:  You blazed a trail for computer scientists to open up in different 
sciences also. That was around the time when quantum computation was being 
formalized, and also it was just around this time, early-mid 1990s, when the Web 
and the economics of the Internet were knocking on our door. So it was the time 
where computer scientists started working on problems of the other sciences and 
of the world. 
 
Karp:  Berkeley has really been one of the focal points for that kind of outlook on 
the sciences. Back around the year 2001, a group of us in the theoretical 
computer science group at Berkeley realized that we had something in common 
– that in our own individual ways, we were reaching out to other scientific fields 
and examining fundamental processes that occur in those fields from the point of 
view of their algorithmic content. Typically, people in the physical sciences would 
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analyze a process in terms of the energy balances and the energy consumption, 
but often you could think of the logic of the process as well and look at how the 
process evolves as a kind of computation. 
 
For example, our colleague Umesh Vazirani working in quantum computing took 
that point of view. Another colleague, Alistair Sinclair, applied the same point of 
view to statistical physics. You yourself ventured into economic mechanisms and 
the analysis of processes on the web. And I continue to investigate regulatory 
pathways and other aspects of computational biology. So we collectively view 
this idea of theory of computation as a lens on the sciences as really a 
fundamental departure that provides many new directions for the field of theory of 
computing. And we feel that by considering the implications for other scientific 
fields, we will discover new foundational problems that will enrich the theory of 
computation. 
 
In fact, that’s one of the guiding ideas behind the new institute that has just come 
into existence at Berkeley supported by the Simons Foundation. We’re just 
inaugurating the Simons Institute for the Theory of Computing. It’s a major 
enterprise for the campus. In the course of the last year and a half, trying to 
develop our plans for this institute and eventually winning the competition for 
Berkeley to be selected as the site of the institute, we’ve established extensive 
ties with people across different scientific fields on the campus ranging from 
climate science to astronomy to neuroscience to economics and cognitive 
science. 
 
So I think we’re entering a new era. You and I are both intimately involved in this 
institute. For me, it represents a departure in the role that I see for myself. 
 
Papadimitriou:  You are going to be the leader, the director of the institute. 
 
Karp:  Yeah. I’m going to be serving as the director. What this means is that at 
this late stage in my career, I’ll be entering a new phase where my focus will be 
not as much as before on my own individual research but rather in creating an 
environment that will foster the ambitions and activities of younger scientists who 
will be flowing into our institute for various programs over the next decade or 
longer. 
 
Papadimitriou:  I predict that you’re still going to draw combinatorial diagrams 
on your blackboard. 
 
Karp:  I hope to sneak away and do a little bit of doodling on the blackboard. But 
every day when I show up at the office, my first responsibility will be to put out 
any fires that may arise at the institute. 
 
Papadimitriou:  You started your scientific career when computer science was 
an embryo. 
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Karp:  That’s right. 
 
Papadimitriou:  In some sense, your career sort of helped shape and define our 
science. I mean, was it a choice? Would you say that you went in that direction 
because you saw something in the future? Or what can you say about computer 
science, how you compare computer science as it is now with how it was then? 
 
Karp:  Well, as I told you earlier, my mother told me that [laughs] data 
processing… 
 
Papadimitriou:  Amazing foresight. I can’t believe that… I don’t think that many 
mothers at that time knew this. 
 
Karp:  Right. Well, she was an unusual mother. But speaking seriously, I really 
feel that for somebody who is mathematically inclined and who is particularly 
drawn to discrete processes and dynamical systems where you look at systems 
not statically but in terms of how they change in the manner that an algorithm is 
executed, one can still find enormous challenges. I think I was very fortunate. I 
could not have chosen a better time to begin my research career, because 
computer science I believe had not even been given a name [1:50:00] at the time 
that I completed my PhD, but in effect we were doing it at Harvard. And so there 
were just fundamental problems that were sitting on the ground waiting to be 
snatched. 
 
Papadimitriou:  It’s funny. My PhD is probably 17 or 18 years after yours, and 
still I feel that I was at the very beginning of computer science, that there was 
low-hanging fruit there, there was a lot of… more paths had to be cut than 
followed and so on. 
 
Karp:  Yeah. I think the frontiers are being pushed out, and it’s probably not 
possible anymore for somebody to have a detailed knowledge of all of the 
different branches. 
 
Papadimitriou:  I think on the eve of my qualifying exam at Princeton, I was the 
last person who knew all of computer science. [laughs]  That was 1974. 
 
Karp:  It’s become more specialized, but compared to mathematics, the frontiers 
are still accessible. It’s still possible for a young scientist to quickly move to the 
forefront of a subarea. And in fact I’ve been addressing this question in a very 
personal way because my son is now entering graduate school. After a career at 
college where he first studied neuroscience, then economics, he decided in his 
senior year that he would like to be a mathematician. So I’ve been counseling 
him over the past year or two about what he should do, how he should pursue it, 
and it turns out – quite by chance I think, although maybe it has something about 
the genes as well – that his interests are very parallel to mine and he’ll be 
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entering a program in the fall in algorithms, combinatorics, and optimization, 
areas that are very closely related to computer science. 
 
So yes, I still think that the opportunities are great. And in view of the immense 
sophistication of pure mathematics, one can probably get the best mileage from 
his limited abilities by working in computer science as compared with a branch of 
pure mathematics. 
 
Papadimitriou:  Computer is many things. It’s an artifact. It is an industry. It is 
the object of intellectual study. It has immense impact on society. How do all 
these aspects of computation affect computer science and especially the theory? 
 
Karp:  We need to turn our attention to models different from those we used 
before. For many decades, the Turing machine model held center stage and it 
was adequate for most of our investigations. In the case of a Turing machine, the 
task is very simple – you have a single user computing a single function. By 
contrast, with the World Wide Web, what we have is a dynamic community of 
agents, partly cooperative, partly adversarial, conducting economic and social 
transactions. It requires a totally different emphasis and a whole new set of 
problems that involve economic mechanisms, communication, questions of 
inducement and motivation that do not arise in the classical theory of 
computation. You yourself have pointed out that we have to view the web as an 
artifact to be understood empirically, much as in the past we’ve studied the brain, 
society, and physical systems. So I think the opportunities are tremendous. 
 
Papadimitriou:  What would you say is the difference between the worldviews 
and ways of approaching problems between a mathematician and a computer 
scientist? 
 
Karp:  I think the most fundamental notion is that a computer scientist will tend to 
look at processes, at change, at dynamics, and at effective computation, 
whereas a mathematician might look at objects described by a fixed set of 
axioms and be interested often in non-constructive solutions. So I think the main 
differences are the notion of effective computation and the notion of dynamical 
processes. 
 
[1:55:05] 
 
[end of recording] 


