
B. Liskov Interview 1

Interview with Barbara Liskov
ACM Turing Award Recipient 2008

Done at MIT April 20, 2016
Interviewer was Tom Van Vleck

Interviewer is noted as “TVV”
Dr. Liskov is noted as “BL”
?? = inaudible (with timestamp) or [] for phonetic
[some slight changes have been made in this transcript to improve the readability, but no

material changes were made to the content]

TVV: Hello, I’m Tom Van Vleck, and I have the honor today to interview Professor

Barbara Liskov, the 2008 ACM Turing Award winner. Today is April 20th, 2016.

TVV: To start with, why don’t you tell us a little bit about your upbringing, where you

lived, and how you got into the business?

BL: I grew up in San Francisco. I was actually born in Los Angeles, so I’m a native

Californian. When I was growing up, it was definitely not considered the thing
to do for a young girl to be interested in math and science. In fact, in those days,
the message that you got was that you were supposed to get married and have
children and not have a job. Nevertheless, I was always encouraged by my
parents to take academics seriously. My mother was a college grad as well as
my father, so it was expected that I would go to college, which in those times
was not that common. Maybe 20% of the high school class would go on to
college and the rest would not. I was always very interested in math and
science, so I took all the courses that were offered at my high school, which
wasn’t a tremendous number compared to what is available today. The most
advanced course that was offered was a pre-calculus course, which I took in my
senior year.

There weren’t many girls in these classes. I don’t really remember how many
there were. I might have been the only one. But that didn’t seem to matter
much. But I did feel from the students around me that this was not something I
should be doing, so I kept a low profile. I think that I was probably encouraged
by the math teacher that I had in my senior year, though I don’t remember
anything specific. But I certainly don’t remember picking up anything negative.

I definitely was encouraged by my parents to do well in academics, although not
anything specifically having to do with math and science. On the other hand,
there were also no negative signs. I think that probably what was particularly

B. Liskov Interview 2

important was my father, who had very high academic aspirations, and my
mother who did never said anything negative about what I was doing. I think
that sometimes mothers can have a lot of impact on young girls, and if they
show signs of disapproving of the path you’re taking, that could be a big push in
the opposite direction.

My father insisted I take Latin because he said it would serve me in good stead,
which it has over the years, but he also insisted that I take typing. The rationale
there was that if, heaven help me, I ever had to support myself because I didn’t
get married or something happened to my husband, then I could get a job as a
secretary. A secretary or a teacher were sort of the acceptable professions for a
woman who had to work.

In those days, if you went to high school in California and you had I think a B+
average, then you were guaranteed a slot at the University of California. The
question was which of the campuses would you end up going to. The top
campus was UC Berkeley, and I had a very high average, so I got into UC
Berkeley. I went there for college. And I started off thinking I was going to
major in physics. I think this was the aspiration of many students because
physics was considered to be the hardest major. But I pretty quickly discovered
that I didn’t have a lot of aptitude for physics and I liked math a lot better, so I
switched to a math major and a physics minor. I didn’t know anything about
computers. I don’t remember any computers as an undergraduate. They were
there. I mean I’ve talked to people after the fact and I know that some of the
men who were there at that time had discovered them. They were probably in
the School of Engineering. And Berkeley has a separate admissions process for
that. I did not apply to engineering. It never crossed my mind to do something
like that.

So I majored in math in the College of Letters & Science. Again, looking back
at these classes, if there was another woman in the class, that would be it, and
often I was the only one. And I would say that at Berkeley, I definitely got push-
back. You know, I was not the one called on in class, I was not the one that was
invited to do a research project with somebody. I was usually the top or one of
the top two in the class, but it didn’t really make any difference. On the other
hand, I never encountered anything overt. Or if I did, I didn’t notice it, because I
have a tendency to not pay too much attention to negative signals, which I think
has stood me in very good stead.

B. Liskov Interview 3

So I majored in math, I minored in physics, and when I finished at Berkeley, I
thought about going to graduate school and I actually applied to both UC
Berkeley and to Princeton. I got into Berkeley. From Princeton I received a
postcard saying that they didn’t admit women to their graduate program. This is
1961, so it was before the Ivy League men’s schools had meshed with the
women’s schools, and women were not allowed into these schools. But I was
very surprised. I had no idea this applied to the graduate school as well and the
undergraduates

But I decided that I wasn’t ready to go on to graduate school because I didn’t
feel like I was ready to work that intensely on my studies. So I decided instead
to take a break. And I wasn’t really thinking of it as a break. I was just thinking
I wasn’t ready to go to school. I wasn’t thinking, “Well, in a couple of years, I’ll
go to school.” I just thought this wasn’t what I wanted to do right now.

My father came from the Boston area. Actually he grew up in Portland, Maine
and then went to Harvard and his family moved to Boston, so I had relatives in
the Boston area and I thought it would be nice to go to Boston for a while and
see what it’s like. I had a friend from high school who’d gone to Stanford who
was interested in doing this too. She was a biology major. So we decided to go
to Boston together.

We went to Boston in the summer of 1961. I didn’t have a job lined up. I
decided I would just go and then I would look around to see what I could find. I
got to Boston probably in August and sent out résumés to various places. I
wasn’t able to get an interesting job as a mathematician but I was offered a job
as a programmer at the Mitre Corporation, and so I took that. That was my first
intimation that there was such a thing as computers. And at that time, since
there were no computer science programs and nobody coming out of college
who knew anything, or they were very rare, they would take anybody they
thought might have an aptitude for programming.

I got a job at Mitre and on my first day at work, they handed me a FORTRAN
manual and they gave me a problem. They said, “Write a program to do"
something. I forget what the “something” was. I discovered that I really
enjoyed this. So I’m totally self-taught as far as programming is concerned. I
had to do this by myself. Nobody was training me. If I had a question, I could
go ask somebody, but basically I was doing it all on my own. I discovered I
really liked it. I was really good at it. I had an aptitude for it. So that was a

B. Liskov Interview 4

great door that opened for me, to find something that I could do really well and
that I really enjoyed.

TVV: Were there other women at Mitre working with you at the time?

BL: There definitely were other women there. There were a large percentage of

women, because, as I said, they were taking them if they thought they could do it
and had the ability to think logically. You didn’t even have to be a math major,
though math would be a good background for this. But it had to do with being
able to think logically and be organized. Yeah, so I definitely remember women
who were working there.

They had different levels of employees. I was just a “programmer” but there was
a higher level known as “tech staff.” While I was there, they hired a man and a
woman, and both had master’s degrees. The woman was hired as a programmer
and the man was hired as a tech staff. I noticed this and thought “Hmm, that
doesn’t really look quite right to me.” Although in retrospect, the man had a
degree from MIT and the woman had it from someplace else, so there could
have been a rationale. But that was how things were in those days. In fact, to
get that job, I had to tell them that I was looking for permanent career
employment. That was the way you had to approach these jobs, because they
were worried about women coming and them leaving, and they would have lost
their money or something.

I worked at Mitre for a year and I was living in Cambridge. I saw an ad for a
position at Harvard working on the language translation project and I thought it
would just be nice not to have to commute, so I applied for that job. I got that
job at a pretty good raise in salary. I knew nothing about how you might
negotiate for a higher salary by getting a competing offer. Mitre offered to
counter that. They offered to give me a tech staff position. But of course it
wasn’t why I was doing it. I just thought it might be fun to do something
different for a year. So I went to work at Harvard on the language translation
project.

That was a good move as it turned out. The project used a huge program that
was written in assembler - it was probably for the IBM 7094. I think in both
places it was a 7094. That gave me an opportunity to really understand how the
machine worked, and since I was maintaining a very large program, it taught me
a lot about program structure. It was a pretty good program as these programs
go, and fairly well modularized, although I knew nothing about modularity in
those days. But it was non-reentrant code, so when you would call a procedure,

B. Liskov Interview 5

they might modify an instruction in the procedure they were calling so that when
it got to the end it would go back to the caller without having to have a stack
where you branch through something. Of course that was a very error-prone
way of doing things. So that was a good lesson for me, to see that.

TVV: So this was led by Tony Oettinger?

BL: Tony Oettinger and Susumu Kuno was a postdoc. Yes. But I was just a

programmer, so I wasn’t doing research. They’d find an error in the program
and they’d just say, “Track this down and fix it.” That was my job.

But it was good training. I worry about our current students who may not ever
really understand how machines work. Although of course machines are a lot
more complicated now than they were then, since in those days they weren’t
doing speculative execution, they didn’t have multiple processors, all that stuff
you have to worry about today. But nevertheless, understanding when you’re
using a higher-level language what the compiler is producing under the covers is
really very helpful to understanding what’s going on.

I worked at that job and partway through the year I decided to apply to graduate
school because it just seemed like it was time. I was learning a tremendous
amount, but as I said, I was pretty much self-taught. I thought, “Well, I probably
could learn a lot more if I went to graduate school. I’d learn faster.” I applied
to Harvard and Stanford. It never occurred to me to apply to MIT. And I went
to Stanford because I wanted to get back to the Bay Area. I’d been in Boston for
a couple years and my family was in San Francisco, so in 1963 I went to
Stanford. They didn’t have a computer science major then. They had a
program. It was between, I guess, math and EE. It was some sort of joint thing.

I went there without any financial support. I didn’t even know there was
financial support. I wasn’t really worried about it anyway because I’d been
saving all my money so I had a lot of savings. But my recollection is that on the
day I arrived I met John McCarthy1. I walked up the steps with him, and I asked
him whether he could support me and he said yes. It’s highly unlikely that this
is what actually happened, so I always think this is an example of how memory
is not all that reliable. I think, in retrospect, they probably expected me to be in
AI because I had been doing this work on the language translation project even
though I knew nothing about AI at the time.

1 Also a Turing Award recipient in 1971

B. Liskov Interview 6

They probably already thought I was going to be working with McCarthy.
That’s my guess now. It was a very small faculty. I think besides John, there
were only Forsythe2 and Gene Golub. There was a big project in numerical
analysis. And Niklaus Wirth came, but he wasn’t there yet. So it was pretty
small faculty. I don’t think there were all that many options about what you
would be working on. There weren’t many of us in my class either. I think five
maybe. I’m not sure. Raj Reddy3 was in my class.

So I moved back to Stanford in the fall of 1963 and started working with John
and taking classes. It was a good thing to do.

TVV: What kind of classes were they?

BL: Whatever they offered. So I took a lot of classes with Dana Scott4. He was at

Stanford at the time and he was teaching classes in logic. I remember a class in
compilers. I remember that we had to write some kind of little compiler-like
thing. I don’t really remember what it was, but we used to take over the
machine at night. It was a B5500 I think. That way we could get fast
turnaround, because it was still the days of batch processing, and if you couldn’t
get hold of the machine, then you would have to submit your program and wait a
day or so before you could get your results.

Clearly interactive programming is a big improvement over batch processing,
but one advantage of batch processing is that you have to think through your
experiment very carefully before you submit it, otherwise you’re just wasting a
whole day of time. Another advantage of batch processing is that you have to
learn how to multiplex your time, because you can’t just sit there waiting.
[laughs] I think both of those were actually very valuable skills that served me
in good stead as time went by.

I don’t know what else I took. There was certainly no course in operating
systems. I refused to take the course in numerical analysis because I really
didn’t like that stuff. So I don’t know - I took whatever, what people were
taking, whatever it was they offered. I remember Jerry Feldman showed up
maybe my third year. Probably Niklaus Wirth was teaching the compiler course.
That might have been my second year. It’s hard to remember.

2 George Forsythe, founder and head of Stanford’s Computer Science Department
3 Also a Turing Award recipient in 1994
4 Also a Turing Award recipient in 1996

B. Liskov Interview 7

Meanwhile I was working with John [McCarthy] and I was reading whatever
papers were available and so forth. And I figured out, probably in my second
year, that I would really rather be in systems. I think I liked that compiler course
and I liked that way of thinking. But I decided to stick in AI and try to get my
PhD out of the way as expeditiously as possible. I was very interested in what
was then machine learning. I was really interested in trying to make machines
do planning and stuff like that, but it was a very hard problem.

As you know, that’s an area of AI that’s changed hugely since those days. Then
it was this idea that the program would think like a person and you would try to
mimic the way people thought about things. In fact, that was kind of what was
going on in my PhD thesis – the Program to Play Chess Endgames.5 There I was
thinking about what were the strategies I would use as a person playing that
game, and then I built those strategies into my program. But it was limited what
you could accomplish with that way of thinking about machine learning. Now
that we’ve switched to the modern techniques, they seem to make a lot more
progress.

Anyway, I did my PhD working with John McCarthy. And when I was in my
final year, I started looking around for a job, but nobody gave me any guidance.
John was not a person who would have done that anyway and I didn’t really
understand any sort of application process. So I didn’t apply to any schools. I
sort of waited for people to come to me, which in a way was what was going on
with others - I mean Raj Reddy and so forth, because it was the old boys’
network in full play at that time.

So what I had offers to do… I must have applied to somewhere, because I don’t
think these just came out of the blue, but I had an offer at Hayward State – that
was because Harry Huskey who was running the department there knew me. I
had an offer at SRI – that was because… I can’t remember his name right now,
but the person running SRI labs knew me. Then I had an offer from Mitre where
they knew me, right? [laughs] And I knew that the job at Hayward State would
be a very bad idea, because it was a heavy teaching load with very little research,
and that didn’t seem like a good idea. And I wanted to move back to the Boston
area. I actually came and applied to MIT, and I think they would have offered

 5 Huberman (Liskov), Barbara Jane (1968), A program to play chess end games, Stanford

University Department of Computer Science, Technical Report CS 106, Stanford Artificial
Intelligence Project Memo AI-65

B. Liskov Interview 8

me a job as a tech staff probably. Not a research associate. I’m not sure exactly.
I decided that probably wasn’t a good idea.

So I decided to go to Mitre. That was a good idea because I was also changing
fields from AI to systems, and I didn’t know too much about systems. I think I’d
had that one course in compilers plus my background in computer architecture
such as it was. So I had a lot to learn. And so this is now the fall of 1968. I
moved to the Boston area. By then I had met my husband. We weren’t married
yet, but that seemed like a good thing to continue with, and so I moved back to
the Boston area and took the job at Mitre.

I started at Mitre in September of 1968, and the first project they handed me was
a microprogramming project. In those days, microprogramming was considered
to be an interesting research direction. The idea was that they would provide
you with a read-only memory and a very simple, small instruction set, and then
you could implement a more grandiose instruction set using the read-only
memory and this very small instruction set. I had read the paper6 on the THE
operating system and I was very intrigued with the notion of semaphores and I
was interested in parallel computing, so I decided to put the project in that
direction. I mean, why do a project like that if you’re just going to implement a
standard instruction set? So I sort of moved it in that direction.

I actually had a chance to meet [Edsger W.] Dijkstra. He came to Mitre. Maybe
it was the spring of ’69. I’m not really sure. I met with him and we talked about
semaphores, and I decided to implement them in the hardware. I had put into
the hardware, using the microprogram, sort of a basis for parallel programming.
It was a single processor, but this was a way of time-sharing. When that part of
the project was finished, then the next part of the project was to use it for
something. I built a little multiprogramming system on top of this hardware,
taking advantage of what semaphores gave me and some of the other stuff that
I’ve really forgotten about, how you control the interrupt system and stuff like
that.

TVV: So this was the Interdata 3…

BL: This would be Interdata 3. Or maybe it was the 4.

6 Dijkstra, E.W., “The structure of the 'THE'--multiprogramming system,” Comm. ACM 11, 5 (May

1968), 341-346.

B. Liskov Interview 9

BL: Yeah. I think it was… Was it Interdata 3 or 4? I’ve forgotten. I could look in
my… you know. But anyway, it was…

TVV: They were similar.

BL: Yeah. I probably finished the first part of that thing in the first year, and then in

the second part of the project, which maybe started in the fall of 1969, by then I
was working with one other person, somebody named Bob Curtis who was a
tech staff at Mitre. Actually I don’t remember that Bob was involved. I’m not
sure exactly when we started working together. Anyway, he was definitely
involved in the early work on the Venus operating system.

[chuckles] The little computer I developed was called “Venus” and then we
developed the Venus operating system. I had also a couple of people working as
programmers. I did most of the design and we figured out how to implement
this thing. It was an interesting little system. It’s been a long time, I really
haven’t thought about it much since then, but it got me into operating systems
and I learned about what was going on, the kinds of abstractions that were being
used in operating systems. Semaphores turned out to be handy. That was
probably the second year at Mitre – ’69 maybe into the fall of 1970.

When that project was finished, Mitre asked me to look at programming
methodology. That was a successful project. I’m not sure exactly what these
dates are. I actually have some of the tech reports, so I can go back and figure
this out.

So that got me into programming methodology. Mitre, as you know, works for
the government, and the government puts out request for proposals, and I wasn’t
in a position yet where I was the person who would be answering those
proposals. I was somebody that they were using as a person they could put in
charge of a project once they’d brought it in. When I arrived this Interdata 3
project was there waiting for me to work on, and then after that was done, they’d
already bid on the “software crisis” request for proposals. And I was finishing
up this project, so they asked me to take that on.

That was a marvelous opportunity for me because it opened up a whole new area
I didn’t know anything about. I started reading the literature, which was not vast,
but there definitely was some. The players were the sort of usual players if you
think about… I mean there was Tony Hoare7, Niklaus Wirth8, Dijkstra9, and

7 Also a Turing Award recipient in 1980
8 Also a Turing Award recipient in 1984

B. Liskov Interview 10

other people that you would recognize from those days. I guess most of the
conferences were in Europe now that I think about it.

TVV: Did you go to the NATO program methodology meeting or whatever it was, the

famous one?

BL: I did not, no. I didn’t go to many meetings at this time. Later I was in Working

Group 2.3, 2.5, the methodology working group. But I never found that kind of
format useful for me. I tend to be more “I work by myself.” But I read
proceedings from these meetings and learned about what was going on, and
started thinking about methodology. As I say in my Turing talks, as I was
looking at various people – Dave Parnas of course was another big player – and
I read all the papers I could get my hands on and thought about their proposals
for methodology. At some point during this process, I realized that I had
invented a methodology of my own while working on the Venus system, not
because I was thinking about it but just because I wanted a way of organizing
that software that gave us a sensible way of approaching the software
development process.

The idea that I had in Venus was that… I mean to understand the background at
this time, you have to understand that there was that ALGOL school of
programming which had a good idea and a bad idea. The good idea was that you
had blocks, and inner block had private data and the outer block couldn’t access
it. The bad idea was you had blocks [laughs] and the inner block could freely
access all the stuff in the outer block, and so there was a natural tendency to
communicate through global variables. That was not such a great idea. Some of
Parnas’ papers talked a bit about why that was a bad idea, although I would not
say that in general it was understood that this was a bad idea.

At any rate, somehow I understood this wasn’t a great idea, and I think it has to
do with the fact that if you have lots of people working on different pieces of the
system and they all can freely communicate through this set of global variables,
you’re going to have a big mess on your hands. And maybe I saw a mess like
that in the Harvard stuff. I’m really not sure where it came from. But I decided
we were not going to have shared global variables in developing the Venus
system. Instead we were just going to break up the global variable space into
what I called “partitions,” and each partition would be in the charge of a
particular program module, and that module would be the only place you could
access that data. Since other parts of the program had to use it, that module
would provide procedures that that other parts of the program could call. That’s
the methodology we used and it worked out extremely well.

9 Also a Turing Award recipient in 1972

B. Liskov Interview 11

Another thing that was going on in Venus, which I usually don’t talk about in my
Turing talk, is that we were also thinking of the question of “How do you
organize a parallel program like an operating system? And how in particular do
you control the devices, the shared resources? How do you communicate among
the threads that are doing the concurrent processing?” And I was kind of using
abstract data types already. I was thinking in terms of the way you do it is the
thread makes use of the shared resource, which is actually an object with a
bunch of operations, and you call that object and it has some hidden resources
which it uses to sort of… it’s being shared by all the threads and that’s how the
control actually happens.

Although I didn’t pull that out in the first paper I wrote on programming
methodology. I wasn’t even really thinking about it until the SOSP10 History
Day where I gave a talk about the history of program structure in operating
systems and I looked at the THE system again, I looked at the Venus system, and
then there was that Schroeder and Nelson, or Nelson and Birrell - the paper
about the two ways of organizing a parallel program, one where you have
queues and one where you send messages. I was looking at some of those
methodology papers and I realized that Venus was actually one of the ones in the
mix there and that there were two structures – one of the shared resources where
threads just call operations and everything is taken care of under the covers, and
this other structure which is you provide a… it’s sort of a CSP-like structure
where you have your thread and it’s got a bunch of methods that are being called
remotely. It’s a different model of computation. So Venus had both those
things. It was on the shared resource, you just call its operations. It kind of
follows naturally from this idea of partitions and just calling operations.

Okay. So I was thinking about methodology and I realized I had a methodology,
so I wrote a paper on it and that went into the Fall Joint I think it was in 19-… I
think it was probably published in ’71 or ’72. But meanwhile I also had written
[a] paper on Venus, and I submitted that to SOSP. It was the third SOSP. And it
was accepted.

By the way, that was the first writing experience I ever had where I had
somebody reading my paper and giving me criticism about it. Because John
[McCarthy] didn’t do that. I had never had that experience. I never had an

10 ACM Symposium on Operating Systems Principles

B. Liskov Interview 12

advisor as a graduate student who was working with me, telling me, “Oh, this
doesn’t make sense. Reorganize that,” and so forth. It was very useful. That
was my boss, Judy Clapp. She’d been a tech staff at Mitre even earlier than me,
and has very interesting stories to tell. She was serving that role and it was very
valuable.

Anyway, the paper on Venus was accepted. SOSP as you know is the top
systems conference. It was even in those days, even though it was only the third
one, because it was the only act in town. Jerry Saltzer was the… I was one of
the prize papers. They’ve always had this tradition of the top few papers, the
award papers, and they go into… they used to go into the Communications.
Now they go into TOCS.

So Jerry was the chair of my session, and Corby was there, Professor Corbató11.
And I’m not sure who else was there from MIT. Probably other people from the
Multics group. And after my talk I was invited to apply to MIT. So I think I
talked to Jerry. He encouraged me to apply, so I did. I also applied to Berkeley,
and I could have probably gone to Berkeley, but my husband was not willing to
move. We were married by then and he worked for Raytheon and it didn’t look
like it was easy for him. Certainly not in the Berkeley area. He might have been
able to do something down in the peninsula. So I moved to MIT in the fall of
1972. And at the same time, Mike Schroeder was hired, so they hired two
people in systems.

I think it was Title IX12 that sort of opened up things for women. My
understanding of what happened was the landscape had changed. All of a
sudden there was more pressure on universities to hire women. I don’t think all
universities were paying much attention to this, but MIT was paying attention. I
think it was coming from Jerry Wiesner, who was the president of MIT, because
this kind of stuff has to come from the top. Jerry was actually interested in
increasing the number of women. The head of the EE department – it wasn’t
EECS yet, it was just EE – was Louis Smullin, and I think Louis was interested
in doing this. Then Bob Fano was the head of computer science, and Bob was
definitely interested in doing this. They were looking for a woman and there I
was. So it was a mutually beneficial exchange. As soon as I got the offer, I
knew I was going to leave Mitre. It was just something I guess I’d always
thought would be fun to do, and I decided I was going to do it.

11 Fernando José Corbató, himself a Turing Award recipient in 1990
12 Title IX is a comprehensive federal law that prohibits discrimination on the basis of sex in any

federally funded education program or activity.

B. Liskov Interview 13

So I got to MIT. There were only 10 women on the faculty out of a faculty of a
thousand. As you know, since you went to MIT, the number of women in the
undergraduate population was very, very small. My husband is class of 1960
and there were 16 women in his class. I mean so small, it’s really, you know…
MIT always admitted women, but they never had very many, partly because they
had no housing for them and so they didn’t know what to do with them. That
changed when… I forget the name of the woman who gave money for a
dormitory for women13, and as soon as they had more space, they started to let
more women in. That was in the ’70s or maybe the late ’60s. I’m not sure
exactly when.

TVV: ’60s.

BL: It was the ’60s? Yeah. So I went to MIT in the fall of 1972 and that was a

wonderful move for me. The glory of working as a university professor is that
you get to do whatever you want, right? You go to a place like MIT, you have
certain responsibilities. MIT is very focused on teaching and quality teaching,
and everybody teaches two courses a year, and that takes time and you got to pay
attention to that. But as far as research is concerned, you figure out what you’re
researching on.

Of course there’s a downside to this too. First of all, you better have the ideas.
You have to figure out what you’re going to do. You can do it, but you have to
figure out what it is and then you have to raise money. But raising money was
pretty easy in those days because those were the days when DARPA14 was
supporting computer science research and it was mostly putting its money into a
few institutions. I don’t remember whether it was Project MAC still or Lab for
Computer Science, but we used to submit one proposal for the whole lab and I
just had to write a couple of pages in that proposal to get money. I also wrote
NSF proposals just to have sort of another source of money and to practice how
to do that. But compared to the situation today, it was a lot easier to fund your
research then.

So I came to MIT. The first course I taught was what is currently 6.004. So it’s
a computer architecture course. This was a weird assignment for me because I
had no EE background, and I was actually in an EE department. It wasn’t EECS
yet. I don’t remember when it became EECS. Probably a few a years later.
That was a bit of a scramble. Jack Dennis had a graduate student, Clem Leung,

13 McCormick Hall is named after Stanley A. McCormick, the husband of Katherine Dexter McCormick

’04, who was the benefactor of the building
14 Defense Advanced Research Projects Agency

B. Liskov Interview 14

who was also a TA for the class, and he helped me. You know, I was keeping
sort of one week ahead of the students, learning stuff about circuits and so forth,
which really I had no background in. And I definitely had students who were
not happy to see me. I didn’t feel that I got discrimination from the faculty, but I
did feel that the students… there was a few students in the class that were…
they’d try to trip me up. They’d try to ask me a question I couldn’t answer. Of
course I was at a kind of vulnerable position, teaching a course in an area I
didn’t know. So that was a little bit of a baptism by fire, but I learned how to… I
was one week ahead of them, and I learned how to say, “I’ll talk about that at
another time.” [laughs] Meanwhile I started getting the research…

Oh, the other problem was I was in Project MAC or LCS, and they decided I
was an AI person and they put me on the AI floor. I think they wanted me to
work in AI. But meanwhile I was working programming methodology. Jack
Dennis in the spring of 1963 helped me move my office back down to the
systems floor, which was a much more congenial place, and that helped a lot. So
Jack was very helpful.

So meanwhile in research, I’m sitting there thinking about programming
methodology, and I was really interested in programming methodology. I
thought it was a very important field. And what I had noticed was that although
the papers were very compelling when you read them and they always had an
example and you would follow the example and you’d say, “Oh yes, that’s very
convincing. This is the right way to do things”… And I’m thinking specifically
about Parnas’ papers because his were about how to structure programming. If
you think about the papers at the time, there were papers on “Here’s how you
design software.” So Niklaus Wirth wrote about top-down programming and
Dijkstra had that wonderful letter to the Communications of the ACM on “Go To
Statement Considered Harmful,” and really the gist of that paper, if you think
behind the scenes of that paper, it was really about Dijkstra’s message, which
was “We should be reasoning about the correctness of code.” The goto was bad
because it made it harder to do that reasoning, but the idea that programming is
an intellectually difficult problem and that we should approach it in a kind of
mathematical way, that was early days and that was a pretty significant step
forward to see that way of thinking about things.

But Dave Parnas was writing about modularity, and he was saying, “Here is how
we should think about modules.” He actually said, “Programs are built of
modules, but I don’t know what they are.” And that was kind of the state of the

B. Liskov Interview 15

art at the time. But he had the idea of specifications. He was saying, “Whatever
they are, we better describe their connections completely.” So he meant
“Whatever their interface is, we better have a complete description.”

I used to feel kind of jealous of the electrical engineers because I thought, “At
least they have these components and they connect them by wires, and that
forces you to really focus on what those wires are.” Whereas software was so
plastic that people used to design without thinking much about those wires, and
so then they would end up with this huge mess of interconnections between the
pieces of the program, and that was a big problem. That was a problem I was
looking at in Venus when I said, “We’re going to have partitions,” but it was just
a problem in general. Global variables were a big problem. Just the ability that
there was nothing forcing you to do things in any particular way, so you could
do whatever you wanted.

So anyway, I was thinking about this. I was thinking about the fact that even
though I would read Parnas’ paper and I was convinced that people would read
my paper and have the same reaction, you would say, “Yes, that’s a great idea,”
but when you start to think about “How do I apply it to my own stuff?”
everything fell apart, you just had no idea how to apply it.

I was trying to think about “What can we do to make things better?” and at some
point, and I really don’t know when, but probably winter of 1963-64… I mean…

TVV: ’73.

BL: …’72-73, [laughs] I got the idea of data abstraction. And it was this marvelous

idea. It came out of nowhere. But once I got it, I could see that this was really
going to work because programmers already knew about abstract data types. I
mean even if they weren’t thinking about them, because they knew when they
used an array in their Fortran program that this not something the hardware had,
this was something that you used through a set of operations and under the
covers there was an implementation going on. Certainly you knew this in spades
if you were using Lisp, which was what I wrote my thesis in, because there you
used lists and it was clear there was an implementation underneath and that they
were abstract.

So I felt programmers could understand the notion of data abstraction. They
already understood about procedure abstraction, and the data abstraction was
more powerful because a procedure… Oh, by the way, they were sometimes
implementing a data abstraction with a procedure abstraction by having a whole
bunch of extra arguments that controlled the different things the procedure was

B. Liskov Interview 16

going to do, but that was a mess also. So I felt this was something that
programmers would feel an affinity to and something they could understand.

And I think another thing that was important about it was… So it was a bigger
module, it fit an idea of modularity – you needed something bigger than a
procedure in order to really make progress – and it was also an abstraction. And
that was important too because when you design, you need to think abstractly,
and having a thing that matches the abstract thought, that helps you with your
design. So being able to think in terms of “What data abstraction do I want for
this place? What procedure abstraction do I want for there?” this is a design
approach. So it was also useful from that perspective.

I was lucky enough to have this wonderful moment in which I had this idea, and
as soon as I had that idea, I knew that it was going to go somewhere. So I
started working on that idea. And I started working jointly with Steve Zilles.
And this was definitely in the spring of 1973.

Steve was a graduate student at MIT and he is an employee of IBM. IBM was in
the same Tech Square building that the lab was in. He was older. He was in his
early thirties, so he’d been working for IBM for a while and then he went back
to school, and he was only I think going to school part-time because he was still
working for IBM. And he had had some similar ideas, so Steve and I started to
work together. I think Jack Dennis organized a little workshop in the spring of
1963, and maybe that’s how I got connected to Steve. I think Tony Hoare was
there, but I could be confused about this. I haven’t tried to figure it out. But
Jack was interested in these ideas and he was encouraging me to work on them.

Steve and I started working on this. And having an idea and figuring out what
this idea is all about are two different things, so it was just “Here’s a direction to
go in.” So we started trying to flesh it out, and we knew that we probably were
going to work on programming language as a result because you need to express
an idea like that in a programming language so that people have within their
grasp the necessary linguistic features to make it all sort of hang together. We
were interested in “What would a programming language be like? How could
you have type checking that would encompass this notion of data abstraction?”
And just the whole thing was a big mystery, but we started working on this.

Of course we read papers, and now I was moving into programming languages
from a background where I knew Lisp and Fortran, and of course I’d done

B. Liskov Interview 17

reading on other stuff. Steve coming from IBM, which was the big player in
programming at the time – they had Fortran, they had PL/I, they had COBOL –
so we covered a wide range of programming languages between the two of us
and we read a bunch of papers. The one that I found the most… Well, we read
the paper on Simula 67, and that didn’t quite have data abstraction in it even
though it was about classes and subclasses, and you could see how they could be
data abstraction. It had no encapsulation, which is a very critical component if
you want modularity, and they were mostly interested in inheritance, which we
saw as a red herring, so we ignored that.

Jim Morris had a wonderful paper on “Protection in programming languages”15 I
think it was called, where he was talking about modularity and what are the rules
that you have to follow in order to get the benefits of modularity. So the benefits
of modularity are local reasoning… That’s the most important. And Jim said,
“Well, a module has some state inside it and then a bunch of code. The first rule
is that the code on the outside of the module can’t modify that state. And this is
clearly essential, because if the code on the outside could modify that state, then
I’d never be able to reason about the correctness of that module because all the
code in the program would be suspect.” But then he said, “But in addition you
want modifiability, which means that if I don’t like the way that module’s
implemented, I’d like to be able to replace it with another piece of code
implemented in a different way. And so to get modifiability, the code on the
outside shouldn’t even look at the state. It should only interact through this
abstract interface.”

So those are in fact the two key pieces of modularity, although in those days and
actually even today, another very important component about modularity is that
it’s a management tool, because it allows you to break up your program into
separate pieces. If they follow these rules, then people can work on these pieces
independently. In those days, people didn’t know what modules were, and there
were papers being written that would say things like “A module must not be
more than a thousand lines of code.” I mean people really did not understand
the notion of abstraction, the notion of encapsulation. They mostly only
understood that they needed a way of controlling the program development
process so that people could be working on separate things.

Anyway, Jim laid out those two principles, and Tony Hoare at the same time was
writing papers about… He already had the notion of abstracting from a

15 James H. Morris, Jr., Communications of the ACM, Volume 16 Issue 1, Jan. 1973, Pages 15-21

B. Liskov Interview 18

representation to an abstract data type even though sort of they were existing
types rather than… So this idea was coming up in very many different places.

But Jim had no idea how to implement this. So then after you say, “Well, these
are the rules,” the question is “Well, can I enforce those? In particular, can I
build them into the programming language so that the compiler can ensure that
you get encapsulation?” So that was what Steve and I were struggling with.
How would you implement this? How would you make it work? Jim had a
proposal which was basically to use encryption. He talked about “seal” and
“unseal.” And that would work. The idea is the module has a key. It encrypts
an object when it comes out, it decrypts when it comes in. If somebody’s been
mucking around with it, you can tell. That certainly works, but it’s not practical.
So we were looking for a… You know, “I don’t want to do it that way. I want
something efficient.”

And by the summer of 1973, we had figured out that it was possible to do this
with a compiler by having a notion of a linguistic structure that implemented a
data abstraction and the compiler would just ensure the abstraction barrier, and
the code on the outside would only be able to call the operations. It was
nevertheless just a sketch. I mean we didn’t have a language. We just had a
proposal for a language. And in that paper, we talked about some issues we
didn’t know how to handle. In particular, generics and polymorphism.

Polymorphism was neglected for years. I think it’s relatively easy, when you’re
just doing procedures, to ignore the fact that “I don’t want a sort routine that
works on an array of integers. I want a sort routine that works in general.” But
given the limited range of data types that existed at the time, you can kind of see
why people weren’t thinking about that. As soon as you go for data abstraction,
you can see that you need some mechanism to allow you to define a data
abstraction like a list or a set or a map or something that you just define it once
and you don’t have to keep re-implementing it every time you have another type
of element. And clearly there was polymorphism in the implementation of the
built-in types. So arrays could have floats or ints if you were working in
Fortran. So it was there. It just wasn’t sort of pulled out as a mechanism that
programmers could get their hands on, and we could see that was going to be an
important component of it.

We wrote this paper on abstract data types and it was a big hit. I mean we
submitted it to the Conference on Very High Level Languages – which I don’t

B. Liskov Interview 19

know when it stopped, it didn’t exist for very many years – and it resonated with
a lot of people. We finished this paper in the summer of 1973.

Then in the fall of 1973, I started working on what came to be called CLU. So
here was this proposal for a programming language with just a few hints of what
might be in it and some statements about “It’d be nice if it had polymorphism.
It’d be nice if it had exception handling.” Exception handling was also… people
were trying to figure out what that meant in those days. That was another area in
programming languages that people were thinking about but had no real idea of
what should be done. So the next step was to sort of really get down to brass
tacks and figure out what all this stuff was.

In the fall of 1973, I picked up three graduate students – Russ Atkinson, Larry
Snyder… or Alan Snyder, and Craig Schaffert – and they along with me became
the designers of CLU. We used to have a weekly group meeting where we
would all get together and we’d be working on some particular topic like “What
should the exception mechanism be like?” or whatever was the topic of the
week. We wrote design notes. In those days, you didn’t write them online. You
wrote them. My assistant, Ann Rubin, would type them up. We had a very
rigorous design process, and we had a group meeting that was attended by quite
a few more people than just us. So Steve was coming, Jack Dennis used to
come. Other people. Students of Jack’s. So we had a pretty big group and we
would just hammer out… Everything we looked at we’d try to look at from all
possible directions and figure out “Of these two approaches, what’s the benefits?
What are the disadvantages?”

We had a very rational design process, and that’s how we got CLU together.
And the students implemented, and we implemented as we went. We started off
with a compiler written in a language called MDL – M-D-L – which was a Lisp
variant, and a very small subset of CLU, and then we bootstrapped. You know,
we used that to implement to CLU. And of course CLU itself was a big test case
for the methodology, because a compiler’s a pretty big program, and so if you
can build a compiler, especially when you’re working in sequential
programming, that’s a good test case. So it was very useful for us to be
implementing our own compiler since it was forcing us to make sure that the
linguistic mechanisms we were providing were powerful enough for the
compiler.

B. Liskov Interview 20

So we’re implementing CLU, we’re designing CLU. We’d figured out… We
call these things “clusters.” I think the word “cluster” was even used in that
paper with Steve. We couldn’t think of a good name. Eventually we just used
CLU, C-L-U, the first three letters of “cluster.” And I guess that… I’m not
going to talk about the actual features of CLU, but I do want to talk about it in
more general terms.

CLU was way ahead of its time. It wasn’t just that it had data abstraction and
nobody else had this. The only other project that was going on at the time that
was looking at data abstraction was Bill Wulf and Mary Shaw were working on
a language called Alphard at CMU. So they were also looking at data
abstraction. A big difference between them and us was that I came from Lisp, I
believed in the heap. They were very much in the ALGOL world or the…
There were a lot of arguments in those days about “Pointers are bad.” So they
wanted everything to be on the stack. Of course you can avoid garbage
collection, but it made everything much more complicated for them. So I think
it slowed them down. Whereas I was coming from the Lisp camp. I believed in
garbage collection, I believed in the heap. I didn’t think pointers were bad
provided you could get your type checking sorted out. I was however very in
favor of strong type checking, and as I say in my talk, this is partly a reaction to
Lisp, because I found it so annoying that they didn’t do static checking and you
can save an awful lot of time in the program development process if you have a
good compiler doing static analysis.

Lisp had another thing that influenced me a lot, which was separate compilation.
That was also very important. Right from day one, CLU was always separately
compiled. In fact, our idea was you would put into the program library a
description of the interface of a module first, and then you could compile code
that used the module even though the module wasn’t implemented yet. And if
you wanted to, you could provide a sort of simpleminded simulation of the
implementation as your first implementation if you wanted to go further. So we
were carrying this notion of separate compilation, - we were pushing it as far as
we thought we could.

CLU had data abstraction. We knew we needed polymorphism. And
polymorphism was a challenge for us because of the fact that when you write a
data type or a procedure that’s parameterized by some arbitrary type T,
sometimes not every arbitrary type is a legitimate parameter. So if you’re
talking about a sorted set of T, then you have to have some way of comparing

B. Liskov Interview 21

the T elements. And not every type has an ordering on it. And we didn’t know
how to… And we wanted to capture this statically. We didn’t want this to be
some sort of dynamic thing where we discovered at runtime, “Oh, the operation
we need is missing.” We wanted to ensure at compile time that there was such
an operation.

Finally we invented what we called “where clauses,” where we would simply
list the set of operations with their signatures that the type was required to have,
and then the compiler could check when it was compiling a use that the
parameter type being provided had the operations that were required. Of course
we captured only syntax, not semantics. You know, we said, “It has to have an
operation named less than…” With two Ts returning a Boolean, we didn’t say it
was an ordering relation. So that would have been part of its specification. You
would have had to reason about this outside. But that’s about as far as you can
go with a compiler, because a compiler doesn’t reason. You know, it can do
simple parts of the reasoning but not the full reasoning.

Interestingly there’s something called type classes in Haskell and these are
strongly related to where clauses. They are pulling the requirements for a
polymorphic module, saying, “Here’s a set of operations, here are their
signatures,” and then you can put a specification with it. But CLU had these in
there as where clauses. So that was our solution for polymorphism.

We had an exception handling mechanism. We thought exceptions are very
important, because from programming methodology point of view, you would
like the specifications of your operations to be complete if possible. Not partial
but complete. So covering the entire range of possible inputs. Since if you ever
have “anything but true” as the precondition for your call, there’s a potential
source of errors there because somebody using your module forgets, whereas if
it’s covering all the bases, then you can be certain that those errors are not
possible. But when you try to make a procedure total, then you have this
problem that you can’t return the same way over the entire space of inputs. So
you need some way, we thought, of bringing this to the attention of the caller.

The way that people manage this problem today and even then when they don’t
have an exception mechanism or they think it’s too expensive to use it, is they
play a game. So they’ll say, “Well, you return a value and a special piece of this
value tells you what’s going on.” Like “I return a pointer to an object, but if the
pointer is null, this means something.” And the problem is that’s very error
prone. “I’ll return an integer if the integer is negative.” This has a special

B. Liskov Interview 22

meaning but people forget to test. In some sense, it’s the same as having a
partial spec. It’s slightly better, but it’s also very error prone. So we wanted a
mechanism that told the user, really push those results into another part of your
program.

This all seems so commonplace today because this is how Java’s mechanism
works, but in those days, it didn’t exist. So we invented that stuff. And we
worried about a lot of the problems with exception handling. One of the
problems with checked exceptions in Java is that people don’t like to have to
write the code to handle exceptions that aren’t going to happen in their program.
“I just checked that my index is in bounds, so why do I have to write a catch
clause when I call the lookup? Because I know it’s not going to happen.” So we
handled that by turning those into a special failure exception.

So CLU had an exception mechanism. That was another large part of our
design, working out all the details of how that would work.

And then the third part of our design was iterators. That was one we didn’t
foresee going into the project. The other two, I think they were in that original
paper, but iterators was not something on my map. But we had come to realize
we needed an iteration mechanism because many data abstractions are
collections, like sets and maps and stuff like that, and when you collect, it’s
usually because you want to do something with the collection, which is often
iterating over it. Although you can figure out ways of doing iterations in the
absence of a mechanism, it seemed more elegant to have a mechanism. And as I
have told the story many times, we went to Carnegie Mellon, we visited with
Bill Wulf and Mary Shaw and their group. They told us about something called
generators, which actually was coming out of AI ideas. So we listened to this
and generators were kind of like what iterators are in Java today. They were
objects with a bunch of operations to get the iteration started and so forth.

So we could see this was a nice solution, but we thought it was kind of inelegant
and overkill. And so on the plane going back to Boston, my student Russ
Atkinson invented iterators, and iterators are tailored for use with a for loop.
You call the iterator to start the loop. Every time it’s got a new value to provide
you, it uses a special return instruction called yield. We then run the loop body.
At the end of the loop body, we return back into the iterator exactly where it
yielded so it just continues in its control flow. When it has nothing more to
yield, it returns, and that terminates the loop.

B. Liskov Interview 23

It’s a limited form of coroutine, because you don’t have the ability to sort of
keep them running, multiple of them or so forth. For example, you can’t run
over two trees and check for the same fringe using iterators. They have to be
nested. But we decided – and this is kind of the 90% rule for programming
language design – most of the time, this somewhat limited use of iterators was
what you wanted. So rather than have a more complicated mechanism that got
you further but wasn’t as convenient to use in the normal case, we would go for
the simpler mechanism. And it was nice too because it had a very efficient
implementation where we simply passed the loop body as sort of a hidden
routine to the iterator, which called every time it yielded. So very
straightforward.

So that was CLU. And by 1978, we had a compiler that was working well, we
had a language, we had a reference manual, we had users. It was being used at
over 200 sites at one point. It was being used for building big software.

I should say that it was important to design a language for several reasons. One
was people have to write programs in the language for you to understand
whether you have the right mechanisms in place. Our users, if they didn’t like
something, they would complain and we would think about whether our
mechanisms were powerful enough.

Another is performance matters. So you need to think about “How expensive is
it?” For example, our exception mechanism, it only cost about twice as much to
signal an exception as it did to do a normal return. If exception mechanisms are
expensive, which is unfortunately the way things are in modern languages,
people don’t want to use them. Even though they might be wrong. I mean it
may be that the exception case doesn’t happen very often, and so if you look at
the overall performance of the program, the cost of the exception doesn’t matter
very much, maybe. But we felt it was important to have an efficient exception
mechanism so that that barrier to use would not exist.

Then you want a mathematical definition. You want a real mathematical object
that people can understand the meaning of. So that was another reason why it
was important to do programming languages. Then we wanted a language
because people think in terms of… Programmers think in terms of programming
languages, so seeing those features just sets the stage for figuring out what to do.

B. Liskov Interview 24

And by the way, once the features exist, now you can start to simulate them in
other languages and people will still see it’s a data abstraction. So for many
years 6.001, our introductory course that Gerry Sussman developed, they were
teaching data abstraction, but they were using basically a record of pointers to
(provide) the methods of the data type. And after data abstraction exists, you
can kind of see that’s the way to go. So that’s fine.

That’s really the story of CLU. And it got to be 1977 or 1978 and CLU was
pretty much finished, and I started to think about what to do next. At that time, I
had already started teaching 6.170.

TVV: Which is what?

BL: 6.170 for many years was the second programming course in our curriculum.

And I was asked to develop this course by Corby and other people in the
department who thought we needed such a course. So our students would start
with 6.001, which was taught in Lisp, or Scheme actually, and they learned how
to build little programs. And the idea in 6.170 was “Okay. Now how do you
build good, big programs?”

So I developed this course. It was all based on… It was about programming
methodology, how do you do design, how do you use data abstraction, how do
you do modular design. It was really in line with my interests, and I taught it for
about – let me think, ’77 – probably 20-25 years, something like that. I to this
day still get people telling me how important it was for them, what an impact it
had on their career, because it really did teach the students how to think about
modular design and how to organize a big project.

And we still teach it. It’s just morphed into another course, which… It was too
much work for the students. This is an MIT problem in general – courses are too
much work for the students. So they sort of tried to divide it. I’m not sure this
has been terribly successful. I have a feeling these courses tend to… more and
more material accretes in the course as you go by.

Anyway, so I was thinking about what to do next. I could have continued
working on programming language stuff, but I didn’t feel like I had any great
ideas. I didn’t see another abstraction mechanism. I didn’t see a way where I
would be able to make a big impact. I mean CLU, this work had made a huge
impact, so I’m sort of looking for impact like that. And iterators were really
important too. But parallel computing, I didn’t have any great ideas about what
to do about that. So I thought, “Well, no.” [laughs]

B. Liskov Interview 25

I also thought about commercialization, but I decided that… In these days
maybe you can commercialize by putting stuff out on the web and people will
start to pick it up and maybe there will be users who contribute to the
implementation and so forth. I think it’s still an awful lot of work. I think the
people who put it out there end up spending most of their time focused on that.
So it’s not really research. It’s much more development. So that didn’t seem
like a very good direction to go in.

I was looking around thinking about what to do, and I started to think about the
ARPANET. And I really don’t know, I don’t remember what it was that caused
me to see this problem lurking in the ARPANET. It wasn’t a problem that I
invented. Bob Kahn16 had been writing papers about the ARPANET. So in
those days people did email, people did FTP, people did remote login. That was
kind of what you did on the Internet, and I was using email already. I mean
people have told me email didn’t exist so early, but it existed in the ’70s because
I was using it. But there was a dream of writing distributed programs where
they would have components running on different computers and they would
communicate by sending messages, and nobody knew how to do that. So I
thought, “Ah, this is a great problem,” and so I jumped into distributed
computing.

This was in the late ’70s. I just switched directions. I didn’t switch totally
because I was still working on 6.170. I had been thinking about “How do you
reason about the correctness of abstract data types? How do you write
specifications for abstract data types?” A lot of this was being taught to the
students in my course. I was also…

TVV: If I could, I’m going to pause you for a moment.

[Recording was paused for everyone to take a break]

BL: Okay. So where were…? [laughs]

TVV: [A lot of it was being tied to your students…]

BL: In 6.170, yeah. And I was working with John Guttag. I forget when John came

to MIT. He had done his thesis on specifications of abstract data types. Steve

16 Robert (“Bob”) Elliot Kahn, himself a Turing Award recipient in 2004

B. Liskov Interview 26

Zilles had done a similar… didn’t quite finish his thesis, but a similar kind of
research. So John and I were working together. We started working together on
6.170. We wrote a book. I was still interested in the programming methodology
stuff. Not so much the programming language stuff, but the programming
methodology stuff. But I jumped into research in distributed computing, and I
really stayed in that area after that, with a few diversions into other stuff, and
had a good time.

I thought it was ironic in a way that I decided to not look at concurrency when I
was working on CLU on the grounds that I had enough on my plate and that
would have just been a huge distraction. When I got into distributed computing,
of course concurrency came right back, so I’m thinking about concurrency again
since clearly you have all these computers and they’re all working in parallel
and so forth. In a way, distributed computing is a great place to think in terms of
abstract data types because you want to have different objects running on
different machines, they’re going to communicate.

One of the things I was thinking about in the early days of the first project,
which was the Argus project to develop a language to implement these
distributed programs, was “What is the communication mechanism?” I ended
up strongly on the side of remote procedure call. You know, that on my remote
machine I have an object, it provides operations, and over here I call those
operations. And then under the cover, stuff is passing. Argus was one language
system, so we would have been able to… If you’re running on one machine and
you have one language, you can do a much more efficient remote procedure call
than you can do if you worry about heterogeneous machines, different
programming languages, and so forth.

Anyway, I started working in distributed computing and that was a long haul. In
the ’80s and the ’90s I had some great students. I’m not sure what to talk about
there. It’s…

TVV: Well, let’s see. Who influenced you? Were you… How about Lampson17? Was

he a… his stuff at Xerox? Or…

BL: Well, so I was definitely at this point going to operating system conferences.

Certainly I… Another course I taught at MIT was 6.033, the systems course. I
taught that many times. And so Multics and various operating systems, all that
stuff.

17 Butler W Lampson, himself a Turing Award Recipient in 1992

B. Liskov Interview 27

I wouldn’t say… You know, it’s hard to answer. I wouldn’t say that Butler’s
work particularly influenced me. There was a group in the ’70s of DARPA
contractors who got together a couple times a year to talk about programming
languages and programming methodology. So Butler was in that group, Bill
Wulf and Mary Shaw were in that group, I was in that group, Jim Horning, the
Euclid developers. So there, I used to go that meeting every six months or so,
and there was a lot of exchange of ideas. You look at a language like Euclid and
you can see data abstraction, specifications, all that stuff was going on.

But when I moved into… No, the thing that influenced me was transactions.

TVV: Right.

BL: Yeah, that’s right.

BL: And that was coming from Jim Gray, from System R, from the database

community.

TVV: Right. And then Lampson and Sturgis with the stable…

BL: The stable storage18, but that was really much more a 6.033 topic than it was an

Argus topic. So what we did in Argus was we brought transactions into the
programming language. We were interested in the point that when you make
one of these remote procedure calls, you can’t be sure you’re going to get an
answer because you’re talking to a different machine and there could be a reason
why communication isn’t working, and you will never know what that reason is
because you might just not have been waiting long enough for the answer to
come back or it might really be down. Right? This is the beauty and the
horribleness of distributed computing. I think it’s kind of neat myself, that you
just have to get in this mindset where the lack of an answer tells you nothing,
right?

The problem is here I am on the calling side and I don’t want to wait forever, so
what do I do? Well, what we thought you did was you’re running a little
subaction and you abort it, and that means even if it happened over there, it
hasn’t really happened and so you don’t have to worry about it. You could try an
alternative technique and so forth.

That was a big piece of originality in Argus. We ran the whole thing as
transactions. So we had objects that were instances of data types. They ran on

18 Lampson, Butler W. and Howard E. Sturgis, Crash recovery in a distributed data storage system,

Unpublished technical report, Xerox Palo Alto Research Center, June, 1979, 25 pp.

B. Liskov Interview 28

individual machines. And then we ran computations as transactions, and every
time we made a remote call, we ran it as a subaction. That was sort of the
position of Argus. I don’t think it was necessarily a good idea because it was
complicated and expensive. I’m not sure I would do things the same way were I
to do it today. I would probably use a much simpler model of computation.

One thing that’s interesting, a piece of history about Argus though, is that X-
Windows came out of Argus. Bob Scheifler was working for me. He was one of
two staff members who were big implementers for us. He’s a marvelous
implementer. We needed a way of debugging distributed programs you’re
running, and he came up with X-Windows because what was nice was you could
have a window over here watching that… we called them “guardians,” these
objects, and another one over here watching this guardian. So it gave you a very
nice debugging environment.

Then Jerry Saltzer had been in charge of Project Athena and Kerberos had come
out of that. That was a big hit because it was public domain, and so Mike
Dertouzos thought, “Well, let’s try to make X into the public domain,” so we
formed the X Consortium. This was kind of the start of windows being the way
that you managed your system in a distributed world. It wasn’t the first
windows. There was something called W I think which preceded it. W, X – “X”
is after “W.” But it was just an interesting little sidelight on what was going on.
It wasn’t my invention, it was Bob’s.

So we implemented Argus. I mean at this point, we’re trying to make some
sense out of “What are distributed systems?” and there’s a lot of work in the
operating system community, people are thinking about “Maybe I just have a
great big heap, and programs run and they share these objects in the heap.” I’m
not sure that this work ever really went anywhere in the sense of “People are
building programs using that,” because what happened was the big RPC19 model
came in. The idea was you build your components, they communicate through
an interface that’s described in the library, and software connects them together,
so you get heterogeneity. The performance is not great, but that was the idea.

Anyway, I worked on Argus and then students who were working for me at the
time, we were thinking about data abstraction and concurrency. So Bill Weihl
wrote a thesis on commutativity and how you can use the specification of an
abstract data type to figure out how much concurrency’s allowed. In a database

19 Remote Procedure Call

B. Liskov Interview 29

at that time, they used two-phase locking. That’s a mechanism that has no
understanding of any meaning. It’s just a technique that you can use that will
guarantee serializability. There was also optimistic concurrency control – not
used so much then, but used a lot later. But Bill’s idea was “If I understand the
semantics of the operations, I can get more concurrency than would be allowed
by these concurrency control mechanisms that don’t understand the semantics.”
So that was an early piece of work that came out of that group.

Then another thing that happened in the ’80s was we invented what’s essentially
Paxos. We invented something called “viewstamped replication” – this was
another one of my students, Brian Oki – because we were interested in reliability
and availability. I mean I thought of distributed computing as being both a
blessing and a curse. If your machine went down in a non-distributed system,
you can’t do anything until it comes up. With a distributed system, you could
have stuff someplace else so maybe you could continue working.

On the other hand, if you have stuff someplace else and you don’t have a way of
controlling things, then there’s more than one failure that can cause you to stop
working, so what do you do about that? We came up with a replication
technique to ensure that everything worked properly, and as long as f out of 2f +
1 nodes were working… So yeah.

TVV: Okay. So why don’t you tell us about the Liskov substitution principle?

BL: That was an interesting thing that happened in the ’80s. At the same time that I

was developing CLU and Bill and Mary were working on Alphard, Alan Kay20
and Adele Goldberg were working on Smalltalk. On the west coast. Although it
may seem a little strange these days, in those days it was a long way from the
east coast to the west coast, and of course we had no conference calls in those
days too. That whole business about object-oriented programming was
developing on the west coast and on the east coast we were mostly working on
data abstraction, and the two worlds were kind of separated. So I knew the
name, but we didn’t run into each other at conferences and there wasn’t much
crosstalk going on.

In the 1980s, I was asked to give a keynote at OOPSLA21, which I think it was
maybe the second OOPSLA. It hadn’t been in existence very long. So I decided
that this was a good opportunity to learn about what was going on in object-
oriented languages. So I started reading all the papers and I discovered that

20 Himself a Turing Award recipient in 2003
21 Object-Oriented Programming, Systems, Languages & Applications is an annual ACM research

conference

B. Liskov Interview 30

hierarchy was being used for two different purposes. One was simply
inheritance. So I have a class, it implements something, I can build a subclass, I
can borrow all that implementation, change it however I want, add a few extra
methods, change the representation. Whatever I want to do, I just sort of borrow
the code and keep working on it.

The other way it was being used was for type hierarchy. So the idea was that the
superclass would define a supertype, and then a subclass would extend this to
become a subtype. I thought this idea of type hierarchy was very interesting, but
I also felt that they didn’t understand it very well. I remember reading papers in
which it was clear they were very confused about it, because one in particular
that I remember said that a stack and a queue were both subtypes of one another.
This is clearly not true because if you wrote a program that expected a stack and
you got a queue instead, you would be very surprised by its behavior. The
difference between LIFO and FIFO is a big deal.

This led me to start thinking about “What does it really mean to have a
supertype and subtype?” And I came up with a rule, an informal rule which I
presented in my keynote at OOPSLA which simply said that a subtype should
behave like a supertype as far as you can tell by using the supertype methods.
So it wasn’t that it couldn’t behave differently. It’s just that as long as you
limited your interaction with its objects to the supertype methods, you would get
the behavior you expected.

This was an informal definition just given based on intuition. It’s intuitively
right in some sense. You can see how you understand the supertype, you write
some code in terms of the supertype, whatever object you get should behave that
way you expect. Otherwise how can you do this independent reasoning about
behavior?

Later on Jeannette Wing, who actually had been my master’s student I think and
then John Guttag’s PhD student, approached me and said, “Why don’t we try to
figure out precisely what this means?” So we worked together on this in some
papers that got published a bit later.

Meanwhile I was working on distributed computing, I was particularly interested
in viewstamped replication and some of the other work that was going on in my
group at the time, and I wasn’t really thinking about this until sometime in the
’90s when I got an email from someone who said, “Can you tell me if this is the

B. Liskov Interview 31

correct meaning of the Liskov substitution principle?” So that was the first time
I had any idea [laughs] that there was such a thing, that this name had
developed. Technically it’s called “behavioral subtyping.” You know, it says
subtypes behave like supertypes. So I just thought that was very amusing. I
discovered there were lots and lots of people on the Internet having arguments
about what the Liskov substitution principle meant. So it was nice to have
something that had an impact like that. I would say you put data abstraction
together with type hierarchy and now you have sort of modern object-oriented
programming.

But that was a little deviation from the work I was doing, which was all
distributed computing. I worked on distributed computing through the ’80s and
’90s. And it’s kind of hard to remember all the different projects that were going
on. Sometime in the fairly early ’90s I started working on the Thor project,
which in some sense was the opposite of Argus. So Argus was a project in
which the objects were the components of the distributed system. Thor was a
project in which you had a client-server model, the objects were stored in the
servers, and the clients interacted with one another only through their use of the
objects.

So it was much more of a database view of the world than Argus was. And we
were still running transactions, but now these were transactions… they weren’t
distributed transactions as in Argus. They were one-machine transactions where
a client would run against the objects at the servers and at the end either commit
or abort, and that would cause the global state to change. And I think that might
be more productive way of building applications. That was truly an object-
oriented system as opposed to a database system. We used a very interesting
form of optimistic concurrency control and we did a lot of work on cache
management and other techniques that made the system perform well.

As you know, performance is greatly overrated in the minds of computer
scientists. On the other hand, performance matters a lot when you’re building a
platform that you would like to people to build applications on top of. So it
matters a lot in an operating system. It would matter a lot in a system like Thor
or Argus because you would expect to build on top, and any problem with the
performance that exists at the level of the implementation of the platform will be
multiplied when you get to the top level.

B. Liskov Interview 32

In the ’90s, in addition to the work on Thor, my group did two other things that I
thought were notable. The first was Byzantine fault tolerance and the other one
was decentralized information flow control. The first one… I’m not sure
exactly the order these happened. They’re probably simultaneous. The first one
happened with my student Miguel Castro. What happened was I saw a request
for proposal from DARPA talking about malicious intruders on the Internet and
what can we do to counteract their impact. And I gave this to Miguel. I said,
“Think about this. See if you can think of something interesting we might
propose to do.” And he thought, “Well, maybe we should look at this question
of replication in the presence of Byzantine attacks,” and this ultimately turned
into that work on Byzantine fault tolerance.

It wasn’t that people hadn’t worked on it before, but they had been mostly
theoreticians, and so they weren’t thinking about a practical technique, one that
would have a low cost or as low cost as you could manage, and it would really
be able to be used in practice.

TVV: So we should say what “Byzantine” means.

BL: Oh. “Byzantine” means arbitrary failures. The work I did in the ’80s on

viewstamped replication, otherwise known as Paxos, assumed benign failures
where a computer was either running or it wasn’t. You know, a message either
arrived or it didn’t. It wasn’t garbled in some way. The computer either failed
by crashing or it was running correctly. You know, the message arrived intact or
it didn’t come at all. Or maybe it arrived and it wasn’t intact, but you recognized
it right away and you could throw it away.

With Byzantine failures, the computer keeps running. It’s not running properly
anymore, but it’s running nevertheless. Of course mostly this will happen and
you’ll be able to know that it’s not running properly, because it will be doing
weird things, but a real Byzantine failure is one where it continues to run and it
looks like it’s okay. And there were examples of this happening. For example,
you’re probably aware of the stuff that was going on in the networking
community where a little flip of a bit in a message caused all sorts of problems
to develop in routing and so forth of the message.

In the case of Byzantine failures in running a computer, these were mostly the
result of attacks. And it’s interesting, when I first started working in the Internet
in the ’80s, we were just a group of pals. Everybody was a friend. It started off
as a group of universities connected by the ARPANET, and we didn’t really
worry about attacks because nobody was interested in doing attacks. We were

B. Liskov Interview 33

just interested in “How do you make things work?” As we moved into the ’90s,
this was increasingly not a valid assumption. Once the World Wide Web came
along…

And I should say right now that, like everybody else I know in the sort of
mainstream computer science community, I didn’t see it coming. I had no idea
that we were going to move from these computers that my pals were using to
something where the whole world started to use it. That was an amazing
transformation.

Anyway, as it became this thing that the whole wide world was using, then the
problem of bad actors who would try to launch attacks on people’s computers
for purposes we know today of really bad stuff, like encrypting your files and
then demanding blackmail money to give you the key and stuff like that.

So in the ’90s, we were in a transitional period where we began to think that
maybe these attacks actually mattered. So the question of how to do a
replication technique that would handle Byzantine attacks where one of the
replicas was in fact behaving maliciously and would appear to be behaving
properly but was actually not behaving properly. For example you’d say, “Run
this operation for me,” and it would come back and say, “Okay, and here’s your
answer,” but in reality it had done something entirely different. That was an
example of a Byzantine attack [really “failure”].

So Miguel and I worked on this problem, how to do a practical protocol. For a
benign failure you need 2f + 1 replicas. So to handle one bad replica, you need
3. For Byzantine you need 3f + 1. So you would need four. And you also need
a more complicated protocol. And I’m convinced that one of the reasons we
were able to figure out how to do this was because we had done viewstamped
replication in my group earlier, and looking back at what happened, I see
Byzantine fault tolerance as being viewstamped replication extended a little bit.
It has an extra phase in the protocol, it has an extra replica, but it’s quite closely
related. So I think it helped Miguel and me when we were trying to figure out
how to make this work that we had that background to depend on.

The other major deviation was decentralized information flow control. This was
work I did with my student Andrew Myers. For security in systems, there had
always been two different approaches. Access control, which controlled what a
program could access or what a user was allowed to access, but once something

B. Liskov Interview 34

could be accessed, you could do anything you wanted to with it. Information
flow control didn’t control access. It controlled what could happen with the
information after the fact. So if you were entitled to read secret files – and this
came out of this kind of work in the military – then you would not be allowed to
expose that information except to something where secret information could go.
So it wasn’t the control of what you looked at that mattered, it was the control of
what you did with it.

These systems had always been based on a centralized notion of who was in
control of things. There was Top Secret, there was Secret, there was
Confidential. Somebody was classifying everything and then the system just
followed the rules based on those sort of centralized notions. What I did with
Andrew was to decentralize this so that individual users could put labels on their
data based on their own desires for the control and then make the whole thing
work in the same way, controlling the access. And that’s led to quite a bit of
work in programming languages and operating systems after the fact. We
worked on Thor and we worked on these two interesting directions, and we did
some programming language work too, especially with Andrew who was a
programming language person working in my group.

That took us through the end of the ’90s. Then I took a couple years off and
worked for a startup just to see what it was like. This was a startup called
SightPath that was fairly soon after I joined bought by Cisco, and I ended up
working there for two years. I would say working in a company was not my cup
of tea, so I returned to MIT and I became head of the computer science part of
our department. I continued working on distributed computing, developed a
system called Aeolus, which was a decentralized information flow control
system with a programming language component. Then I started working in the
administration at MIT. I was Associate Provost for Faculty Equity. So that was
what was happening in the 2000s.

Then I decided to retire, and I retired a couple years ago. But in 2012 I sort of
stopped working in distributed computing and since then I’ve been working in
programming languages and multicore machines just to sort of continue the… I
like to move around and I decided it was time to move around for a while, so
I’ve been doing that.

So that’s sort of what I’ve done.

B. Liskov Interview 35

TVV: Let’s see. A couple things. When you were doing the Provost thing, what was
that and how did it work out?

BL: Well, when I was Associate Head for Computer Science, I was in that position

for three years and I hired five women in three years after a long period in which
we had somehow or other never been able to find women that could be hired.
And these women have all done extremely well, so it wasn’t like I was making
compromises to hire them. I just managed to find them where other people
couldn’t see them.

So the person who… It’s a long, complicated story. But anyway, it was this
kind of thing – sort of trying to make sure that departments all across the
Institute were doing the right thing as far as women and underrepresented
minorities were concerned. Mostly it had to do with first of all you want the
data. So you want to know what’s happening. Then you… There’s a lot of…
You want to make sure the search is carried out properly and you want to make
sure that department heads understand certain basic things. Like for example it’s
their responsibility to make sure that their junior faculty are not being asked to
do the wrong jobs. For example a lot of people don’t understand that women are
much more willing to say yes to things than men are. So if you say, “Would you
teach this lab course? And oh, by the way, it’s really a hard job,” a young
woman assistant professor is much more likely to say yes than a man is, so you
have to sort of take this kind of stuff into account. So it was just that kind of
stuff. Trying to make the Institute better by making sure that we were doing a
good job of this.

TVV: And you think it’s made a difference?

BL: I think that it helped when I was in the position. I think this is the kind of stuff

that you have to pay attention to, it has to come from top, and if you stop paying
attention to it, I think things will slide. So I haven’t… I did my bit and now I’ve
passed it on to others.

TVV: So in general, how do you feel about MIT?

BL: Oh, I absolutely love MIT. I think it’s been a great place to work. I mean I

would say the lab is also a great place. MIT has this peculiar sort of matrix
organization where there are departments and then we do our research in a lab.
So I’ve been in… it was Project MAC, then it was Lab for Computer Science,
then we merged with the AI lab. Now it’s CSAIL – Computer Science and AI
Lab.

But MIT has been wonderful – the quality of the students, the quality of the
faculty, the interest in doing research and really understanding things from first

B. Liskov Interview 36

principles. I mean I find this is true even in our undergraduates. They want to
really understand things and so it just makes a wonderful environment. I also
have found my colleagues very collaborative. I love to come to work every day.
It’s just been great.

TVV: Let’s see. A couple of other things that I wanted to make sure we covered. Tell

us a little bit about the Turing itself. When did you hear you were getting the
award? What’s it been like?

BL: I received the award… It’s the 2008 Turing Award. I received it in 2009. This

has been a mystery to me why they have this offset in years. It’s something
historical.

I learned about it because I got a phone call from Brian Randell. He was the
head of the Turing committee that year and I knew him from the old times. He
was another one of the people doing work in programming methodology in the
days when I was in that field. That was a huge surprise. He says to me, I picked
up the phone, “This is Brian Randell.” I hadn’t seen him in years. He said,
“You better sit down.” [laughs] So that was great.

It’s wonderful to receive the Turing Award because it’s such a validation of what
you did. And what was interesting for me was that, because of the way I have
moved around, I had stopped working in data abstraction, programming
languages, methodology. I’d been just working in distributed computing and I
wasn’t even thinking about that stuff. So I got the award and it caused me to go
back and think about what things were like in the old days.

The first surprise was that I discovered my students didn’t really know there was
a life before data abstraction. And they actually didn’t even know some of these
old papers. I was pretty surprised by that. So I went back and I reread all those
old papers. It was very interesting to look back. And these are extremely good
papers too. It’s really a part of our history that should not be forgotten.

As I like to tell people, when I got the award, there’s a lot of buzz on the
Internet, and my husband was online every day looking at what the stuff was.
And of course not everything you see out there is nice. In fact, [laughs] many
things are not so nice. So there’s nice things, there’s not so nice things. But
anyway, one thing he found out there one day was a quote that was roughly
“What did she get the award for? Everybody knows this anyway.” And I just
thought that was the most amazing compliment, though I don’t think it was
intended that way. But to realize that these early ideas, not just mine but of

B. Liskov Interview 37

course all the work that had gone on in those early years to understand data
abstraction and specifications and programming language and so forth, to
understand that they had moved so into the mainstream that everybody knew
them and they were the basis of how you wrote programs, I mean that was just a
remarkable thing to understand.

TVV: Do you want to say a little about Java, which certainly shows a lot of toolmarks

from your…

BL: Well, so Java, I was very glad to see Java come along because it was the first

mainstream programming language that really had these ideas in it. It really did
have data abstraction and object-oriented programming. There really was a
notion that superclasses ought to be supertypes, the notion of interfaces define a
kind of behavior. They enforce the Liskov substitution principle in the sense
that a subtype, a subclass has to provide the methods with the right signatures
the superclass has.

I would have done it differently had it been me, and Andrew and I, Andrew
Myers and I did try to convince them to put polymorphism into the language.
When it first came out, it wasn’t there. Of course when you design a language
like this, you have to decide what’s important to concentrate on, what you’re
going to leave for later. So it’s not that this is necessarily the wrong thing. It’s
just not what I would have done. I think that it sort of opened the doors for this
to become… In a way, the reason it is mainstream is because it’s there now in
the languages that people use on a day-to-day basis.

And it’s moved into C++ in C++’s kind of form. I wish people would enforce
encapsulation better. I think they do a better job in C#. Sometimes you have to
violate encapsulation, like when you’re building a platform, like a debugging
platform. But it’s better if you could limit that to people who are entitled to do it
rather than having it be something any old programmer can do.

You know, there was a lot of stuff, sort of wisdom in the old days that people
maybe lost. So one thing we learned was that reading code mattered much more
than writing code, because code is written once but read many times, first by the
author, then by others. There was another one I was going to tell you about.
Well, it will come to me. Anyway, I feel like some of these lessons from the past
have been forgotten, and maybe it’s just as well because it means we’ve made
progress.

TVV: Well, another thing that we should talk about to get on tape is the people that

you’ve learned from and that have influenced you.

B. Liskov Interview 38

BL: Well, I worked with John McCarthy. I would not say that John was a very

hands-on advisor, but I also felt that John was a fair-minded person and I
certainly never felt any sort of negative “You’re a woman, you can’t do it” or
stuff like that. So he was good and he handed me my thesis topic when I
couldn’t make progress on machine learning, this “Program to Play Chess
Endgames,” which he thought I would be good to work on because I didn’t play
chess. And he wanted me to approach it from the point of view of “I’m just
somebody learning and I see what the books are saying and I think about that
from a heuristic point of view,” which turned out to be quite effective.

I think that Niklaus Wirth was also important. I knew him as a student. He tried
to convince me to switch into programming languages and compilers, and he
was right that it was really much more my field. I didn’t do it because I felt I
would get finished with the PhD faster by sticking with AI, which I think was
also correct.

Of course I’ve learned a lot from lots of people whose papers I’ve read and
whom I’ve talked to, technically. I mean Jerry Saltzer, all those years I was
teaching 6.033 which was his course, our systems course, and his way of
thinking about systems. Corby, another one. Bob Fano, another one. Bob Fano
is a wonderful person. He’s the one who hired me. He told me that I was an
engineer. I hadn’t actually realized that, and he was so right. [laughs] I think I
didn’t know what an engineer was. And then Jack Dennis was a big help. Jack
was the one who got me off of the AI floor down onto the systems floor and in
general was just encouraging and helpful, especially in those early years when I
was finding my way. So I would say those are the people that I think back on
and I feel were helpful.

TVV: And let’s see. Oh yeah. So how has this experience been for your family?

BL: Well, I do have a family, so I did get married. So you can have a career and a

family. That is a message I always try to convey to young women. I have a son.
I have a granddaughter. I had my son before I was tenured. I felt that “I’ll
figure out a way to make this work.” I think that in fact is a very good way to
run your life. Rather than to think through all the things that might go wrong
and worry about it in advance, you just figure you’ll make it work somehow. I
don’t know. My son’s a computer scientist. [laughs] Though he’s more on the
theoretical side than I am.

TVV: He’s a professor, right?

BL: No, he’s not. He was at William and Mary for a while but now he works for

Mitre and he does security research.

B. Liskov Interview 39

TVV: Cool.

BL: Yeah, great. And my husband has been very supportive and helpful. I don’t

think I could do it without… You need a helpful spouse. So I think it’s… I
don’t know how it’s been for my family, but I do have a family and it’s all
worked out okay.

TVV: Well, let’s see. You’ve won a lot of other awards.

BL: Yeah. Well, I won the von Neumann Medal from the IEEE actually a few years

before I got the Turing, and I’ve also got some honorary… You know, I’ve
got… Yeah. I think there’s sort of a tendency once you get one award, sort of
more come along.

TVV: You’ve got a honorary degree from ETH.

BL: I do. Yes. That was the first honorary degree I got. So ETH as you know is one

of the top schools in Europe and a good science and technology school, so yeah.

And the other thing about the Turing Award is you get called on to do a lot of
travel. So in the couple, two or three years afterwards, I traveled and traveled
and traveled all over the world. And it still happens, though not as much as it
did. So that’s been a lot of fun. And my husband has come along with me, so
we’ve been able to experience that together.

TVV: So where are notable places that you went?

BL: China. India. I was thinking… So we’ve been to the Far East several times. Of

course we’ve been to Europe in many places. The only place I haven’t been that
I would really like to go is Africa. But yeah, it just seemed like there was a time
there when there was so much travel. I think that is partly, when you get the
Turing Award, you expect that this is going to happen and really you need to do
that travel. It’s sort of part of what’s involved. Yeah.

TVV: Well, are there other things that we didn’t cover that we should have?

BL: [laughs] It seems to me we’ve done a pretty good job of covering things.

TVV: Well, then let’s… Thank you. Thank you so much for your time.

BL: And thank you for your time. It’s been fun. Thanks.

