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BK: Hello, this is Bruce Kapron.  It is February the 25th, 2016 and this is a recording of 

an interview that I had with Professor Steve Cook at the University of Toronto, 
where Steve is University Professor in the Computer Science and Mathematics 
Departments.  This is part of the ACM Turing Award winners’ project.  Professor 
Cook received the ACM Turing Award in 1982 in recognition for his contributions 
to the theory of computational complexity, and in particular the theory of NP-
completeness, which he introduced in his 1971 paper “The Complexity of 
Theorem-Proving Procedures.”  So now what you’ll be seeing is my interview with 
him. 

 
 
SC: Oh.  Steve, you were… Hello.   
 
BK: You were born and you grew up not far from Toronto in Western New York.  As a 

child, did you already have an interest in science or mathematics? 
 
SC: Yeah.  Well, I certainly had an interest in science.  My father was a chemist and 

worked for a Union Carbide branch, so I was interested in science.  I was good in 
mathematics, but I didn’t think in high school that that was going to be my chief 
interest. 

 
But the big influence on me when I was in high school was Wilson Greatbatch, 
who was a resident of Clarence, New York, same as me.  He was an electrical 
engineer, but a very creative one.  Transistors were a very new thing then, and he 
designed a transistor circuit that went “Bip, bip, bip,” and eventually turned it into 
an artificial pacemaker for hearts which was implantable.  That had never been 
done before.  Well, of course you couldn’t do it with vacuum tubes, obviously.  So 
he eventually got ushered into the Inventors Hall of Fame in the United States for 
inventing this thing. 

 
But while he was doing this and I was in high school, I helped him out.  He had a 
little shop in the top of his garage in which he worked.  He would draw pictures of 
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transistorized circuits and I would solder them together.  Then he’d try them out 
and I could see on an oscilloscope this “Bip, bip, bip.” 

 
BK: This was the late 1950s? 
 
SC: That’s right.  That’s right, because I was in high school.  So like I graduated from 

high school about 1957.  Then I don’t think it actually got turned into a pacemaker 
till some years after that.  Also, he worked for an electronic firm and he got me 
summer jobs there.  So I was very interested in electronics and I thought that was 
going to be my profession. 

 
BK: You mentioned your father.  And your mother was also a teacher? 
 
SC: Yeah.  Well, yes. 
 
BK: She was a teacher, yes? 
 
SC: Yes.  Well, she had two master’s degrees.  My father and mother met at the 

University of Michigan.  She got a master’s degree in English and history then I 
guess.  Yeah.  And of course where my father got his PhD in chemistry.  Then later 
on when…  I have three brothers and she was mostly taking care of us, but when 
we were all off, going off to various places, then she was a teacher.  Oh, she got a 
second master’s degree in English and then she was teaching at a community 
college in the area. 

 
BK: So you mentioned that you had quite an early introduction to I guess at the time 

what was very high technology electronics.  What was your first exposure to 
computers and computer programming? 

 
SC: Yes.  Even in high school, I had a good math teacher who was somewhat interested 

in computers, and he took us to downtown Buffalo to some meeting.  So I already 
had some idea about computers.  But it really wasn’t till I went to University of 
Michigan, which was my undergraduate school…  Since both my parents were 
alumni, there seemed to be no choice.  My very first year, which would have been I 
guess ’58, the spring term, I took a course, a one-hour course in programming.  
This was from Bernard Galler.  We learned how to program, and I think it was the 
IBM 650, which was a vacuum-tube machine whose memory was on a drum, just 
to put you in the category of what computers were like then. 

 
That was probably my real access to computers.  But I enjoyed it a lot and I started 
writing fun programs like…  I remember early on, I wrote a program to test 
Goldbach’s conjecture, which was that every even integer is the sum of two primes.  
So I tested it up to some large number and it turned out to be verified. 

 
BK: And at Michigan, you started off in electrical engineering? 
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SC: That’s right, I actually start-…  It was engineering science I think, but I was 
thinking in terms of electrical engineering.  But my very first year I took a calculus 
course from Nicholas Kazarinoff.  It was I guess not just the completely typical 
calculus course, slightly more advanced.  Anyway, I got quite interested in the 
course and Kazarinoff got interested in me.  He would give me special homework 
theorems to work on.  In fact, he was so impressed that he said I could skip the 
second-year calculus course – which I kind of regret now because I never learned 
two-variable calculus – and go on… there was a third-year course.  And also then I 
took a third-year course in linear algebra.  So yeah, I got off to a good start in 
mathematics. 

 
BK: And eventually you switched into…? 
 
SC: That’s right.  After…  I think I took two and a half years, and then I finally 

switched out of engineering and became an official math major.  That’s right. 
 
BK: So you were successful enough that you ended up going to Harvard for your 

graduate work. 
 
SC: Yes, indeed.  Yeah, yeah.  I was quite excited about that.  I must have gotten good 

reference letters.  So yes, I guess it would have been ’61 I joined, I became a 
student for a master’s degree in the math department.  I got that in ’62. 

 
Then I needed a thesis advisor, but I’d taken a logic course from Hao Wang.  He 
was not in the math department.  He was in the Division of Applied Physics.  But I 
mean he was really a logician.  Logic was his major interest.  But he also was 
interested in computers.  And before coming to Harvard, he worked I guess for both 
Bell Telephone Labs and the IBM Watson Research Laboratory in Yorktown 
Heights, New York.  There he wrote a program to prove theorems in propositional 
calculus automatically.  That was one of his interests, trying to make automatic 
theorem provers.  It apparently was very successful because he used an IBM 704, 
which is another vacuum-tube machine, and in just three minutes it proved all the 
hundred or so propositional tautologies in Russell and Whitehead’s Principia 
Mathematica.  That was a big deal because other people, Shaw and Simon had tried 
to make automatic theorem provers for propositional calculus and apparently they 
weren’t very successful. 

 
BK: Professor Wang was also very interested in foundational issues in mathematics in 

logic and computability.  I’m wondering…  It seems that both with the automated 
theorem proving and with his interest in computability, that really had a big 
influence on a lot of the work that you’ve done. 

 
SC: That’s right.  I mean it certainly did.  There was no question about that, that yeah, 

he was interested in the Entscheidungsproblem of Hilbert, which is the problem of 
determining whether a given predicate calculus formula is satisfiable or not.  Then 
of course Turing and others proved that it’s unsatisfiable.  So then how simple a 
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formula, class of formulas can you make to make it still unsatisfiable?  And there 
was the so-called AEA case, for all exists for all case, and then proved it was still 
unsatisfiable.  So he was part of that.  And yes, that did have an influence on me 
later on. 

 
BK: But computational complexity has always been a theme in your work.  I’m 

wondering if you can say a little bit more about what your PhD research was based 
on. 

 
SC: Ah!  Yeah, okay.  So some background for that.  Computational complexity was a 

new subject of course, and this was in the early 1960s.  In ’63 I think it was, 
Hartmanis and Stearns published their famous paper in which they introduced the 
word “computational complexity” on “The Computational Complexity of 
Functions” or something like that.  So Hartmanis came to Harvard and gave a talk, 
and so I became quite interested in that. 

 
Then the other influence was by Alan Cobham.  Alan Cobham had a degree from 

Harvard and he was a graduate student there.  He wrote a thesis, but he never got 
his PhD because the math department, in addition to a thesis, it requires a minor 
thesis and Alan never bothered with a minor thesis.  But he went off to work for, 
again, IBM Watson Research Lab.  He was connected with…  He was a friend of 
Hao Wang and he would come, so I got to know him.  His famous paper was “The 
Intrinsic Computational Difficulty of Functions.”  That was his paper he wrote.  He 
was interested in…  I think this was really before Hartmanis–Stearns, yeah, that 
happened, but he was interested in “In what sense are some computational 
problems harder than others?” and he compared multiplication and addition as an 
example, “In what way is multiplication harder than addition?”  But his result, 
which… 

 
I mean one thing he did that really had an influence was he introduced the notion of 
what we would now call polynomial-time computable functions.  He argued that 
this is an interesting class, a complexity class, because it seems to be all feasible 
functions, and if you’re not polynomial-time computable, you’re not going to be 
feasible.  He made that argument.  Then he also came up with an interesting 
characterization of the polynomial-time computable functions.  Namely a function 
is polynomial-time computable if and only if it can be obtained from certain initial 
functions and applying the operations of composition and limited recursion on 
notation.  And that’s something he made up, a new kind of recursion.  Primitive 
recursion of course had been well known for many years, but to characterize the 
poly-time computable functions, you needed this other notion, limited recursion on 
notation.  So that also had an influ-…  I was very interested in that. 

 
BK: But in your PhD, you considered the question of the difficulty of multiplication. 
 
SC: That is correct, yes.  Maybe that was because of Alan Cobham’s question.  Yes, of 

course.  It’s very hard to prove lower bounds.  We all know that now and that was 
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certainly true then.  The only way you’d get a lower bound on multiplication was to 
look at the case where the inputs are only read…  What do you call that?  So the 
inputs are restricted so that after each digit is given, you’ll have to give the output 
for the multiplication. 

 
BK: Oh, it’s… 
 
SC: Online.  I’m just thinking online.  Sorry for the…  Yeah.  So this was an online 

model of a Turing machine, which you think of an unlimited number of digits.  
You’re multiplying two numbers in decimal or binary, whatever, it doesn’t matter.  
So the first n, string of n digits would be the n least significant digits in the two 
numbers, and that’s enough information to get their product.  So you had to output 
their product and then go on to the next two digits and then keep outputting the 
product and so on.  That was the online model.  In that model, I was able to get a 
lower bound of n log n over… just over n log n.  What was it?  I can’t remember 
exactly.  n log n over log log n I think it was.  Yeah.  So that was a non-trivial 
lower bound.  That was part of my thesis.  The other parts again talked about 
computational, number theoretic, or real function problems. 

 
BK: After graduating, you became a faculty member in the math department at the 

University of California, Berkeley. 
 
SC: That’s right. 
 
BK: What year was that? 
 
SC: That was 1966.  Yeah, so I finished my PhD in 1966.  I had been offered a job.  

Now the job was half mathematics in the math department and half in the…  It 
wasn’t a computer science department, although they did have a budding computer 
science department just starting.  It was a research job in the Computer Center or 
something, something like that, so it was only half in mathematics.  So yes.  And so 
I started that out in the fall of 1966. 

 
BK: So you were in Berkeley in the late ’60s, which must have been an interesting time 

intellectually and culturally as well. 
 
SC: Indeed.  Of course yeah.  This definitely was…  The free speech movement was in 

full form and there were crowds of people there.  In some cases, the police were 
called in.  There was teargas and all kinds of stuff.  Yes, all that was going on in the 
’60s.  Yes. 

 
BK: As soon as you got there, I assume… or even, as you say, working on your PhD 

you were already thinking of a lot of questions about computational complexity and 
even thinking about polynomial time, so… 
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SC: Yes.  Well, of course yeah, the polynomial time definitely came from Cobham, so I 
was interested in that.  Early on, I did circulate a mimeographed set of notes on 
something like classes of primitive recursive functions, so there were complexity 
classes of primitive recursive functions.  So there was work at Princeton at the time.  
There was a logician at Princeton, and I had read parts of Bennett’s thesis.  
Anyway, his thesis was called On Spectra, which was actually a predicate calculus 
sign, but it had a lot of complexity theory results based on logical… 

 
So there was kind of two different, yeah, classes of people then.  I mean these were 
the logicians doing complexity theory.  So he didn’t talk about Turing machines 
ever that I remember, but I remember one of the complexity classes he talked about 
were the extended positive rudimentary relations, the class of extended positive 
rudimentary relations, which had some fancy definition, logical definition.  Then I 
eventually realized, “You know what this is?  This is nondeterministic polynomial 
time.”  The same characterization.  So that’s probably the first time I became 
interested in what we now call “NP.” 

 
BK: And what year was that? 
 
SC: That would have been, well, ’67, because I circulated this stuff, it has the date on it, 

1967.  So… 
 
BK: So then you were already aware of the question of what the relationship would be 

between P and NP? 
 
SC: Well, absolutely.  I even put it out in there that “Oh, this is interesting.”  So one 

assumes that there are problems in nondeterministic poly time that can’t be done in 
deterministic polynomial time, but might be aware they’re hard to prove that.  And 
I turned out to be right on that point. 

 
BK: And while you were at Berkeley, you were already doing work that then ended up 

at the ACM’s Symposium on Theory of Computing… 
 
SC: Yeah, that’s right.  I had a couple ACM STOC conference papers.  One of them 

was this characterization, another characterization of polynomial time, which I 
think is quite intriguing.  So a problem can be solved in deterministic polynomial 
time if and only if it can be solved by a so-called auxiliary logspace pushdown 
machine.  So what is this?  That’s a Turing machine that has read/write input tape 
and it has a work tape where they commonly use log-space, order log-space 
symbols on its work tape and do the work.  But then…  So that model is a 
characterization of what we call “logspace,” which is, as far as we know, a proper 
subset of polynomial time.  Of course we can’t prove that either, but we assume 
logspace is certainly a subset of polynomial time, but… we assume it’s a proper 
subset.  But if you add the pushdown stack, I proved you exactly get polynomial 
time.  And not only that, the nondeterministic version also gave you deterministic 
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polynomial time.  So I thought that was kind of a neat result.  That got published in 
the ACM journal. 

 
BK: So you left Berkeley and you came to University of Toronto in 1970.  Were you 

recruited by people at Toronto? 
 
SC: The story there is that the math department denied me tenure, because otherwise I 

would have stayed certainly, especially since I had just married my wife Linda, 
who was raised in Berkeley, the centre of universe, and she had no desire to leave 
Berkeley.  So this was quite…  I should say, to be fair, when I proposed to her, I 
told her I might not get tenure.  So she was forewarned. 

 
In any case, yeah, so it looked like I had to get a job somewhere else.  So I applied 
at other places, including Yale and University of Washington and I think IBM 
Research.  Then I went on a trip.  But the Toronto connection, I didn’t have any 
sense of going to Toronto, even though I have to say that I had no problem with 
Canada because we lived in Buffalo, we used to go to resorts, the summer resorts in 
Ontario, so that’s fine.  But anyway, I didn’t think of Toronto.  But yeah, in fact I 
was recruited.  Somebody in the computer science department at Berkeley who had 
just come from… who had been at U of T.  He was Canadian but he was recruited 
by the Berkeley computer science department.  So anyway, he called Tom Hull, the 
chair of the computer science department, and gave my name and said, “Maybe you 
should look into this.”  Yeah, so Tom eventually got hold of me, not on that 
recruiting trip but later on.  So Linda and I went to Toronto and eventually thought, 
“Oh, this is a great place.”  Actually it was a very good budding department. 

 
BK: It must have been young at the time. 
 
SC: Yeah, it was quite new, but they still had a number of people.  Tom Hull had just 

moved there, but Kelly Gotlieb was there and Patt Hume.  And in fact before I 
came, Allan Borodin who is now quite well known as a complexity theorist and 
also Derek Corneil was there, and he is a graph theorist, well known.  So it was 
clearly an up and coming department.  Yeah, so certainly it turned out to be a very 
good choice. 

 
BK: And making the switch to computer science seemed like a natural…? 
 
SC: Oh, that’s true.  But the people who recruited me were all in computer science.  

Actually…  So my first appointment was half in math and half in computer science, 
and then yes, I quickly switched to computer science, realizing the grass was 
greener in the computer science department, yes. 

 
BK: You presented “The Complexity of Theorem-Proving Procedures” at ACM STOC 

in 1971, and that’s the paper that introduces what we now call the theory of NP-
completeness.  How was your paper received at the time? 

 



 8

SC: Actually it was received very well.  Yeah, I gave it to a large audience.  I gave the 
talk to a large audience and there were people there.  I remember Michael Rabin 
was one and he seemed quite impressed.  He had been thinking along similar lines 
actually.  So I got positive feedback from that paper, for sure. 

 
BK: Can you briefly describe a little bit about what’s in the paper, since it’s not in the 

form of NP-completeness that we know today? 
 
SC: For sure.  Not at all.  Those symbols were never uttered in my paper.  So here’s the 

story.  I was interested in the complexity of theorem proving.  In fact, that’s the 
name of the paper, right?  “The Complexity of Theorem-Proving Procedures,” 
which doesn’t sound very much like “NP-completeness.”  So when I submitted the 
paper to STOC, I actually didn’t have my result there.  I had a section on 
propositional calculus and complexity, and I had a section on predicate calculus, 
but I didn’t have any really big results. 

 
But after they accepted my paper despite this…  Because STOC was much easier to 
get into in those days than now.  Its standards have gone way up.  But then when I 
started thinking about writing the final version, I had this idea of completeness, of 
complete problems.  And of course where did the idea come from?  It came from 
completeness for recursively enumerable sets, and in fact the – what is it? – the 
unsatisfiable predicate calculus formulas are complete for recursively enumerable 
problems.  I knew that and my advisor was very interested in that, so I credit him 
for giving me the idea “Well, why can’t we do this at a lower level for propositional 
formulas?” and then the analogue of recursively enumerable becomes 
nondeterministic polynomial time.  And then I proved that the…  Well, what I 
actually proved was that the valid propositional tautology, validity of a 
propositional tautology – which is in co-NP, it’s not in NP – was complete for this 
class.  But the reductions I put in that paper were not the many-one reductions that 
Karp used and I use now, but they were Turing, polynomial-time Turing reductions, 
which are much more general reductions. 

 
Yeah, so I didn’t have the words “NP” and “P” – that was due to Dick Karp later – 
and I didn’t have the same reduction, I had a more general reduction, and I had only 
three complete problems.  And of course Dick Karp later, a year later had 21.  I did 
have three in there.  Of course there was the tautologies and subgraph isomorphism 
– given two graphs, is the first one isomorphic to a subgraph of the other? – and 
then three…  Oh.  And then, well, of course you could also instead of tautologies in 
general, you could look tautologies in disjunctive normal form, that was complete.  
And also, I did also have three DNFs.  So conjunctive normal form with just three 
literals in a conjunct, that was also NP-complete, so that’s what I had in my paper. 

 
BK: And was there a conjecture in there about primality? 
 
SC: I mentioned other possibilities.  Yes, primality testing.  I said that’s a candidate 

maybe for completeness.  I should look and see whether I was doubtful, because in 
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fact there are randomized algorithms for primes.  I may have said that, I don’t 
remember.  And the other, an open question was graph isomorphism.  Neither of 
those are thought to be NP-complete now.  In fact, primes are in poly time.  So 
yeah, I did mention those.  And of course graph isomorphism is definitely thought 
not to be NP-complete, although nobody’s gotten a poly-time algorithm for it. 

 
BK: You mentioned Richard Karp’s paper following onto yours.  How long did it take 

for researchers to sort of realize the significance of NP-completeness? 
 
SC: Oh, I think it came very fast.  I mean it was obvious, and Karp’s paper was very 

well written.  He had 21 examples of NP-complete problem.  He cleaned up the 
terminology.  He introduced “P” for poly-time for “NP” for nondeterministic 
polynomial time.  That was new notation, very clean.  He also introduced “many-
one poly-time reducibility” whereas I had the more general kind of Turing 
reducibility, poly-time Turing reducibility.  And all those were very clean, nice 
definitions.  So that paper definitely caught on very rapidly. 

 
BK: So in the 1970s, there was explosion of research.  Were you surprised at the 

impact? 
 
SC: Yeah, I would say I hadn’t quite anticipated that there were so many NP-complete 

problems.  You know, I think there were two kinds of people working in this field.  
There were the logicians and the people… algorithmic guy.  And Karp was 
definitely an algorithmic guy.  My training had all been with the logicians, so I 
think that’s my excuse for not realizing all of these examples of NP-completeness.  
And I should say on this term, a similar example for the notion of polynomial time 
of course was independently introduced by Jack Edmonds, about the same time as 
Alan Cobham wrote his paper.  But they were from two different areas – Cobham 
was a logician and Jack was an algorithms guy.  I mean they’re two different fields, 
and so quite independently they came up with polynomial time.  But I didn’t know 
about Jack’s stuff at all until much later.  Cobham was my source for polynomial 
time. 

 
BK: The question of whether P is equal to NP is one that’s intrigued and frustrated a lot 

of researchers, so I have to ask you, what’s your opinion on the status of P versus 
NP? 

 
SC: Oh.  Well, that’s easy.  I think P not equal to NP, and I think a majority of 

complexity theorists believe it.  Well, so here’s my tune on this.  First of all, we’re 
really good at finding algorithms for things.  I mean there’s a whole algorithms 
course we teach undergraduates in all these methods of finding algorithms, and lots 
and lots of examples.  But for lower bounds, we aren’t good at finding lower 
bounds.  And here’s my proof.  If you look at the sequence of complexity-classes 
log-space, which is a subset of polynomial time P, which is a subset of NP, 
nondeterministic poly-time, which is a subset of polynomial space.  So here we 
have a sequence of three inclusions starting from log-space and ending in 



 10

polynomial time.  There’s an easy proof that log-space is a proper subset of 
polynomial space just by diagonalization.  Therefore one of those intermediate 
three inclusions has to be proper.  We can’t prove any of them are proper.  QED.  

 
BK: But I guess even in 1967 now, you were telling us that your feeling was that P is 

not equal to NP. 
 
SC: That’s right.  Based on attempts really seemed much harder to solve NP-hard 

problems, or NP problems in general.  So yeah, I guess I conjectured that way back 
then.  Yes. 

 
BK: So not only is that problem P versus NP’s central problem or the central problem in 

theoretically computer science, with the introduction of the Millennium Problems, 
Millennium by the Clay Foundation, the seven problems, it sort of has been 
acknowledged as one of the most open problems… 

 
SC: Yeah, I guess one of the most interesting open prob-…  important, important open 

problems, yes. 
 
BK: So were you consulted about that inclusion, or did you just…? 
 
SC: No, I was not consulted about the inclusion, but after they decided it, they did ask 

me to make a write-up for it.  So I did contribute a write-up for that question, for 
the background. 

 
BK: And I guess before that, Professor Smale had already… he had a list of 21 problems 

I think and included it. 
 
SC: Oh, I guess he did.  Yeah, that’s right.  He had already listed it as one of the…  So 

definitely there’s a consensus this is an important problem. 
 
BK: What about the bigger significance?  I mean it even gets into popular culture in The 

Simpsons or whatever.  So how do you feel about… 
 
SC: [laughs] 
 
BK: …I guess a little bit what’s the real significance of the P versus NP problem? 
 
SC: Well, I don’t know.  Yeah, you’re right, it gets into…  I guess everybody, many 

people know P and NP and they don’t understand what it is.  Well, obviously it’s an 
important question.  And, well, for one thing, if P equals NP, it’s going to rule out a 
lot of cryptography.  It’s hard to imagine how we could have any of the 
cryptographic protocols like RSA and so on.  Public key encryption seemed to be 
impossible.  So that’s on the one hand if it turns out P equals NP.  And on the other 
hand, if P not equal to NP, of course you want to know more, you want to know 
just how hard is NP and so on.  You can’t help but learning a lot more about the 
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problems.  Either way.  Either way it goes, P equals NP or P not equal to NP, we’re 
going to learn a lot more about computation if the problem is solved. 

 
BK: Right from the start of your research career, I guess what you’d call proof 

complexity has been a central focus.  I think many computer scientists know about 
computational complexity, but maybe not so many know about proof complexity.  
So I’m wondering if you could describe a little bit what the concerns are and what 
some of the basic questions… 

 
SC: Well, of course proof complexity in the propositional form is quite related to the P-

NP question because you want to know…  I mean a good aspect of proof 
complexity is you look at proof systems for proving tautologies, for example, 
which is equivalent to proving negations are unsatisfiable.  So we have lots of 
standard proof systems for doing this. 

 
Now the issue there is though “How long is the shortest proof?  Can you get an 
upper bound on the length of the shortest proof in some proof system?”  The 
conjecture there is there’s no polynomial upper bound no matter what proof system, 
you know, efficient proof system.  Under a reasonable definition of proof system, 
could you get a polynomial upper bound on the length of every tautology, a 
polynomial in the length of the tautology of course?  So we conjecture, no, that’s 
sort of like “P not equal to NP” conjecture.  I mean that sort of would imply P not 
equal to NP.  But the…  So you’re…  If there were such things, what I’m trying to 
say, if there were a proof system, efficient proof system to get poly-time proofs to 
all tautologies, then NP would equal co-NP, meaning that the complement of any 
NP problem would also be in NP.  And again, there’s lots and lots of examples, and 
we just don’t think that’s true.  So we conjecture… 

 
So this is all… proof complexity is certainly tied up with computational complexity.  

That’s just one example. 
 
BK: And you mentioned Professor Wang’s program for proving the propositional 

tautologies in Principia, and these days both automated theorem proving or 
satisfiability solving in the propositional case has really become an important 
technology. 

 
SC: Absolutely.  Yeah, of course.  And what was surprising is yeah, there are theorem 

provers especially for sets of clauses, for propositional problems that are in 
conjunctive normal form that are incredibly efficient.  I mean they can find proofs 
or disproofs for even tens of thousands of clauses.  So that’s an interesting, very 
interesting, important subject in its own right.  Of course, despite their great 
successes for some cases, you can always stump them… 

 
BK: Of course. 
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SC: …by coming up with hard examples.  Like the pigeonhole tautologies is a good 
example. 

 
BK: Besides the work in computational complexity, you’ve worked in other areas 

including parallel computing and theory of programming languages.  Is there a 
theme that goes through all this work that holds it together? 

 
SC: Well, it’s all…  I mean certainly the parallel computing part is an interesting… it’s 

certainly mainstream, interesting complexity theory, because in practice now, 
computers have many, many processors and you’re very interested in how much 
time you save if you have a whole bunch of processors.  And there are conjectures 
of course…  Well, for some problems you can’t save much of any time.  For other 
problems, you can save time hugely.  So that’s a very important and natural 
complexity question for parallel.  What was the other…? 

 
BK: The other one was theory of programming languages. 
 
SC: Oh yeah.  Well, that’s Hoare.  My contribution there was to Hoare logic. 
 
BK: Right.  And I think I’ve heard that referred to as “Cook’s theorem of the relative 

completeness of Hoare’s logic.” 
 
SC: [laughs] 
 
BK: And I was quite surprised when I heard it referred to as “Cook’s theorem.” 
 
SC: Well, apparently it’s had some effect.  I mean that’s really not my field, 

programming langua-…  It’s a very important field, proving correctness of 
programs of course, and Hoare had this logic, a whole method of proving 
correctness.  By putting in certain kinds of assertions here and there, you could use 
it to prove correctness of programs.  So I succeeded that in a certain sense his logic 
was complete, so you can always do it if it’s correct.  So yeah, that was just one 
paper, but it seemed to have made a bit of a difference. 

 
BK: Despite all the advances in computing technology – and here I have ’71, but now I 

should say ’67, which is when you originally formulated the problem – you know, 
the ideas about P and NP are still central questions in computer science.  I’m 
wondering why they have such enduring significance. 

 
SC: Well, I mean I guess – I tried to answer that before, right? – because they’re 

obviously important, they’re very important questions, and whichever way they 
resolve, we’re going to learn a lot more about computation.  And of course it’s 
especially relevant at cryptographic protocols, which really would be much more 
difficult if it turns out to P equal NP. 
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BK: Apart from your research, you also have a lot of impact in terms of teaching and 
graduate supervision.  I don’t know the count now, but you’ve had over 30 PhD 
students. 

 
SC: Yeah, it’s 33 I think.  33, 34 graduate students.  Some of them co-supervised I have 

to say.  Especially later, in my more recent years, I have to credit other people like 
Toni Pitassi for being really good and helpful co-supervisors for students.  So 
indeed, yes. 

 
BK: And I’m wondering how you see how those three, teaching and supervision and 

research, interact with each other. 
 
SC: Yeah.  Well, there’s no question supervising graduate students interacts with 

research, because your graduate students become co-authors in the papers.  I mean 
it’s extremely enlightening and important to have graduate students.  I’m very 
grateful to my graduate students, including yourself because we have a joint paper.  
There’s no question that working with graduate students is very enlightening and 
rewarding.  And yeah, I also teach classes to undergraduates and, no, I enjoy that as 
long as I don’t teach too many.  Especially if I’m teaching in the areas I really like, 
which are complexity theory and logic.  Those are my two favourite subjects, and I 
do enjoy teaching those courses because I think they’re really neat and I try to get 
the students to agree.   

 
BK: Well, I have to say from my personal experience that I think from the first time I 

walked into your office, you just treated me more as a colleague than a student, and 
I think it all was driven by real interest in the research questions. 

 
SC: Absolutely, yeah.  Well, you’re definitely a helpful colleague indeed. 
 
BK: So you’re known to be an avid sailor.  When did you first start sailing? 
 
SC: Well, the first serious time I started sailing is when I went to Berkeley.  I had tried 

to sail a few times.  Even at Harvard, you sail.  The sailing there on the river isn’t 
too good, so I decided not to.  But when I went to Berkeley, then you could stand 
up on the hill and see the San Francisco Bay opening up, the high road opening up 
for you, and all the boats out there really looked like fun.  And I said, “Okay, I’m 
going to learn to sail.”  So I joined the student sailing club, UC- whatever it is.  
UCYC, University of California Yacht Club.  But they let faculty members in.  So 
then I joined and they had a very nice teaching program on Sundays.  So you went 
to Sundays and you got in a boat and you had a teacher, and it was all very 
reasonably priced and they would teach you how to sail.  So I really took to that 
right away and became a good sailor. 

 
And the other thing is I met my wife, because she was secretary.  She was an 
undergraduate.  She was secretary of the club.  So that was a great thing.  Two good 
reasons why I learned to sail.  But yes, I absolutely enjoyed it. 
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BK: You’re a member of the Royal Canadian Yacht Club. 
 
SC: I am.  Yes, that’s true.  And so yeah, Linda and I are members of the Royal 

Canadian Yacht Club here.  That was a recruiting tool by Tom Hull by the way to 
come to Toronto.  He pointed out, “We do have a lake here.  We don’t have the 
ocean, but we do have Lake Ontario and they do sail.”  And he invited a member of 
the RCYC to lunch to explain how good it was.  So indeed. 

 
BK: And you raced for a long time. 
 
SC: I still do. 
 
BK: You still do? 
 
SC: I still do.  Yes, from the very beginning I took to sailboat racing, and I still do.  

Right now I sail…  The club owns a fleet of… called Ideal 18s, two-person 
keelboats that are easy to sail.  But they’re all alike and we all go out and race.  I 
have races Thursday evenings and sometimes on Saturdays.  I still do that and I get 
a kick out of it. 

 
BK: You mentioned your wife Linda.  You still live with Linda in Toronto.  And for a 

long time, she worked at University of Toronto, is that correct? 
 
SC: Yeah.  She worked at the admissions office at first and then at the registrar’s office 

at University College.  Then we started having children, and after a while we 
realized that it was tough, it was better if she quit.  So she eventually quit and 
stayed home. 

 
BK: And you have two sons, and I guess both of them have followed in your footsteps 

in their own way.  I wonder if you could tell us a little bit more about them. 
 
SC: Well, Gordon is the older one, born in 1978.  And he took to sailing very early.  

Well, we encouraged him of course, Linda and I, in particular sailing in the 
Optimist dinghy, which is for children 15 and under, and they have a world-class 
racing…  It’s a world-class racing boat.  Optimist dinghies, they’re…  What?  
They’re eight feet long and not very big and have one sail, and they’re for children.  
But they have international regattas.  Anyway, Gordon took to that right away and 
practised and raced in the local races.  Eventually he competed to represent Canada 
in the Optimist Worlds, and only five boats are allowed from each country.  So he 
did that and he actually did that twice, and once it was in Greece and the second 
time it was in Spain, and I got to go and it was great. 

 
Then he graduated.  He got his engineering degree from Queen’s University and 
started a little company making carbon-fibre stuff.  But then he really liked sailing, 
so he decided to try out for the Olympics.  So he worked very hard to…  This is in 
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the 49er class, is one of the Olympic-class racing boats, a 49er.  It’s about 14-18 
feet long and very hot, very fast.  So that was Gordon’s choice, and he worked 
very, very hard and eventually competed for Canada in two different Olympics.  In 
2008 it was in China and 2012 it was in England. 

 
BK: And James. 
 
SC: And James.  James also started out sailing, but he didn’t take to it quite in the same 

way.  But he was certainly interested in computers from age 3 on and also 
mathematics.  So that was his thing.  So he got his undergraduate degree at 
University of Toronto in math and computer science.  Then he went on to Berkeley 
and got his PhD in computer science.  Now he’s working at Google in Silicon 
Valley and really enjoying it. 

 
BK: I have one last question.  What advice do you have for young researchers who are 

interested in starting a career in computer science or mathematics? 
 
SC: Yeah, that’s a really hard question.  I guess my only comment there, as far as 

computer science goes, I think they need no encouragement because right now, as 
you know and I know, undergraduate institutions are being flooded with people 
who want to take computer science.  In our department, really it’s even more than 
we can handle.  We have to turn them away.  So somehow computer science has 
become an enormously interesting field, and probably with some good reason.  I 
mean I think the big driver now is artificial intelligence and machine learning.  
We’re all seeing exciting things happening from that.  And of course it’s a good 
field to go into, no question, but there’s going to be lots of competition. 

 
BK: So I guess…  I don’t know if…  I mean I’ve asked all my questions, but I don’t 

know if there’s anything else you want to add. 
 
SC: Oh, I think you covered it pretty well. 
 
BK: Good.  Well, I really enjoyed talking to you. 
 
SC: Oh, really enjoyed your questions, and very nice of you to come.  How much time 

have you taken?  I don’t know. 
 
BK: I’m not sure.  Probably…  It’s 2:28, so it’s probably been about an hour. 
 
SC: Well, I hope they consider that to be enough. 
 
BK: [laughs] 
 
SC: Don’t want to bore people too much. 
 
[end of recording] 


